

# Overview

- Getting Started
- Loading and Plotting Data
- Analysis Tools
- Examples
- Getting Help

**Getting Started** 

Loading and Plotting Data Analysis Tools Examples Getting Help

Getting Started Requirements

- Windows, Linux, OS X, or Solaris
- IDL 8.4+
- IDL CDF Library 3.6.3+

### Getting Started Installing SPEDAS

### http://spedas.org/wiki/index.php?title=Downloads\_and\_Installation

| Preferences                                                                                                                                                                                                                                                                             |                                                                                                        |                                |                  |                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------|------------------|------------------------------------|
| type filter text                                                                                                                                                                                                                                                                        | Paths                                                                                                  |                                |                  | <b>⇔</b> • ⇔ • ▼                   |
| <ul> <li>General</li> <li>Help</li> <li>IDL</li> <li>Command Line</li> <li>Editor</li> <li>Formatter</li> <li>Graphics</li> <li>IDLdoc</li> <li>Interpreter</li> <li>Paths</li> <li>Svntax Colorina</li> <li>Templates</li> <li>JSON Editor</li> <li>Run/Debua</li> <li>Team</li> </ul> | Select path <ul> <li><idl_def< li=""> <li>/Users/er</li> </idl_def<></li></ul>                         | IDL path<br>AULT><br>ic/spedas |                  | Insert<br>Insert Default<br>Remove |
|                                                                                                                                                                                                                                                                                         |                                                                                                        |                                | ctories          | Move up<br>Move down<br>Expand     |
|                                                                                                                                                                                                                                                                                         | <ul> <li>✓ Enable path cache</li> <li>✓ Warn when a routine is on IDL's path more than once</li> </ul> |                                |                  |                                    |
|                                                                                                                                                                                                                                                                                         |                                                                                                        |                                | Restore Defaults | s Apply                            |
|                                                                                                                                                                                                                                                                                         |                                                                                                        |                                | Cancel           | ОК                                 |

Getting Started Organization

**spedas\_gui**: Components of the SPEDAS Graphical User Interface (GUI)

**external**: Code developed externally, but distributed with SPEDAS (CDAWeb, Geopack, etc.)

projects: Mission specific code

general: General science analysis tools

#### **Getting Started**

Loading and Plotting Data Analysis Tools Examples Getting Help

### Getting Started MMS Load Routines

mms load fam mms load scm mms load mec mms load fpi mms\_load\_hpca mms load eis mms\_load\_feeps mms\_load\_edp mms load edi mms load dsp mms\_load\_aspoc mms load tetrahedron qf mms\_load\_brst\_segments mms load fast segments

Fluxgate Magnetometer Search-coil Magnetometer Ephemeris and Coordinates Fast Plasma Investigation Hot Plasma Composition Analyzer Energetic Ion Spectrometer Fly's Eye Energetic Particle Sensor Electric-field Double Probe Electron Drift Instrument **Digital Signal Processor** Active Spacecraft Potential Control Tetrahedron Quality Factor Find burst intervals Find fast intervals

See folder: /projects/mms/

Getting Started Standard Keywords

- trange =['2015-10-16', '2015-10-17']
- probes probes=[1, 2, 3, 4]
- level='12'
- data\_rate
   data\_rate
   srvy'
- datatype =['des-moms', 'dis-moms']

Getting Started Standard Keywords

• suffix

suffix='\_burst\_mode'

- time\_clip /time\_clip
- no\_update

•

/no\_update

- spdf /spdf
- tplotnames

tplotnames=tvarnames

Getting Started Standard Keywords

local\_data\_dir

local\_data\_dir='/Users/eric/mydata/'

- cdf\_filenames cdf\_filenames=data\_file\_list
- cdf\_version
   cdf\_version='3.0.0'
- min\_version
   min\_version='3.0.0'
- latest\_version /latest\_version

• versions

Getting Started Standard Keywords

major\_version /major\_version

versions=version\_list

- available /available

### Getting Started Standard Keywords

For a complete list of keywords and their descriptions, see the header for the load routine you're interested in, e.g.,

```
PROCEDURE:
        mms_load_fpi
PURPOSE:
        Load data from the Fast Plasma Investigation (FPI) onboard MMS
KEYWORDS:
                      time range of interest [starttime, endtime] with the format
        trange:
                      ['YYYY-MM-DD', 'YYYY-MM-DD'] or to specify more or less than a day
                      ['YYYY-MM-DD/hh:mm:ss', 'YYYY-MM-DD/hh:mm:ss']
                      list of probes, valid values for MMS probes are ['1','2','3','4'].
        probes:
                      If no probe is specified the default is probe '3'
                      indicates level of data processing. FPI levels currently include '12',
        level:
                      'l1b', 'sitl', 'ql'.
                     valid datatypes are:
        datatype:
                        Quicklook: ['des', 'dis']
                        SITL: '' (none; loads both electron and ion data from single CDF)
                       L1b/L2: ['des-dist', 'dis-dist', 'dis-moms', 'des-moms']
                     instrument data rates for MMS FPI include 'fast', 'brst'.
        data_rate:
        local_data_dir: local directory to store the CDF files; should be set if
                      you're on *nix or OSX, the default currently assumes Windows (c:\data\mms\)
                      specifies a different system variable. By default the MMS mission system
        source:
                      variable is !mms
        get_support_data: load support data (defined by support_data attribute in the CDF)
        tplotnames: returns a list of the names of the tplot variables loaded by the load routine
        no_color_setup: don't setup graphics configuration; use this keyword when you're
                      using this load routine from a terminal without an X server running
                     clip the data to the requested time range; note that if you do not use
        time_clip:
                      this keyword you may load a longer time range than requested
```

Getting Started SDC Data Availability

Browse the status of the data: <u>https://lasp.colorado.edu/mms/sdc/public/about/processing/</u>

Browse the data files:

https://lasp.colorado.edu/mms/sdc/public/data/

Search for data files:

https://lasp.colorado.edu/mms/sdc/public/search/

Browse the quicklook plots at the SDC:

https://lasp.colorado.edu/mms/sdc/public/quicklook/

Getting Started Simple Example

; load the MMS1 FGM data for October 16, 2015
mms\_load\_fgm, probe=1, data\_rate='srvy', trange=['2015-10-16', '2015-10-17']

; list the tplot variables loaded tplot\_names

; get the data out of a tplot variable
get\_data, 'mms1\_fgm\_b\_gsm\_srvy\_l2\_bvec', data=bgsm\_vec, dlimits=bgsm\_metadata

; get basic info on the IDL vars that hold the B-field data help, bgsm\_vec ; structure, x: times, y: data (x, y, z) help, bgsm\_metadata ; plotting and file metadata

; store the data into a different tplot variable
store\_data, 'new\_var\_with\_b\_gsm', data=bgsm\_vec, dlimits=bgsm\_metadata

; plot the newly created variable
tplot, 'new\_var\_with\_b\_gsm'

### FGM Example

; load 10 minutes of burst-mode FGM data for probe 1 on October 16, 2015 mms\_load\_fgm, probe=1, data\_rate='brst', trange=['2015-10-16/13:00', '2015-10-16/13:10'], /time\_clip, versions=version\_numbers

; remove gaps
tdegap, ['mms1\_fgm\_b\_gsm\_brst\_l2\_bvec', 'mms1\_fgm\_b\_gsm\_brst\_l2\_btot'], /overwrite

; plot the vector and magnitude
tplot, ['mms1\_fgm\_b\_gsm\_brst\_l2\_bvec', 'mms1\_fgm\_b\_gsm\_brst\_l2\_btot']

; save the plot to a postscript file tprint, 'mms1\_fgm\_b\_gsm\_brst\_l2', /landscape

### https://lasp.colorado.edu/mms/sdc/public/datasets/fields/

### Loading and Plotting Data FGM



### Loading and Plotting Data FGM

; add burst segments bar to the top of the figure
mms\_load\_brst\_segments, trange=['2015-10-16/13:00', '2015-10-16/13:10']

tplot, 'mms\_bss\_burst', /add

; save the plot as a postscript file
tprint, 'mms1\_fgm\_b\_gsm\_brst\_l2\_with\_burstbar', /landscape

### Loading and Plotting Data FGM



### Loading and Plotting Data FGM

; add CDF version #s to the bottom right of the figure mms\_load\_fgm, probe=1, data\_rate='brst', versions=version\_numbers mms\_add\_cdf\_versions, 'fgm', version\_numbers, /right



### Loading and Plotting Data SCM

; load 10 minutes of burst-mode SCM data for probe 2 on October 16, 2015 mms\_load\_scm, probe='2', data\_rate='brst', trange=['2015-10-16/13:00', '2015-10-16/13:10'], /time\_clip

; plot the data
tplot, 'mms2\_scm\_acb\_gse\_scb\_brst\_l2'

; zoom into a few seconds after 13:07 tlimit, ['2015-10-16/13:07:00', '2015-10-16/13:07:02']

; save the plot to a postscript file
tprint, 'mms2\_scm\_acb\_gse\_scb\_brst\_l2', /landscape

# https://lasp.colorado.edu/mms/sdc/public/datasets/fields/

### Loading and Plotting Data SCM



### Loading and Plotting Data EDP

mms\_load\_edp, probe=1, level='l2', datatype='dce', trange=['2015-10-16', '2015-10-17'], /latest\_version

; plot the E-field data
tplot, 'mms1\_edp\_dce\_gse\_fast\_l2'

; save the plot to a postscript file
tprint, 'mms1\_edp\_dce\_gse\_fast\_l2', /landscape

# https://lasp.colorado.edu/mms/sdc/public/datasets/fields/

### Loading and Plotting Data EDP



### Loading and Plotting Data FPI

; load the FPI electron moments data for October 16, 2015 mms\_load\_fpi, probe=3, data\_rate='fast', trange=['2015-10-16', '2015-10-17'], datatype='des-moms'

; plot the omni-directional electron energy spectra and pitch angle distribution tplot, ['mms3\_des\_energyspectr\_omni\_fast', 'mms3\_des\_pitchangdist\_avg']

; save the plot to a postscript file
tprint, 'mms3\_des\_spec\_and\_pad', /landscape

# https://lasp.colorado.edu/mms/sdc/public/datasets/fpi/

### Loading and Plotting Data FPI



### Loading and Plotting Data FPI

; we can also plot the FPI density, bulk velocity

; plot the electron density and flow velocity
tplot, ['mms3\_des\_bulkv\_dbcs\_fast', 'mms3\_des\_numberdensity\_fast']

; save the plot to a postscript file
tprint, 'mms3\_des\_vel\_density', /landscape

# https://lasp.colorado.edu/mms/sdc/public/datasets/fpi/

### Loading and Plotting Data FPI



### Loading and Plotting Data HPCA

; load the HPCA moments data for October 16, 2015 mms\_load\_hpca, probe=4, data\_rate='srvy', trange=['2015-10-16', '2015-10-17'], datatype='moments'

; plot the H+ density, temperature and bulk velocity
tplot, ['mms4\_hpca\_hplus\_number\_density', 'mms4\_hpca\_hplus\_scalar\_temperature',
'mms4\_hpca\_hplus\_ion\_bulk\_velocity']

; save the plot to a postscript file
tprint, 'mms4\_hpca\_hplus\_moments', /landscape

# https://lasp.colorado.edu/mms/sdc/public/datasets/hpca/

### Loading and Plotting Data HPCA



### Loading and Plotting Data HPCA

; load the HPCA ion data for October 16, 2015 mms\_load\_hpca, probe=4, data\_rate='srvy', trange=['2015-10-16', '2015-10-17'], datatype='ion'

; calculate the omni-directional flux by averaging over the anodes for the full field of view mms\_hpca\_calc\_anodes, fov=[0, 360]

; save the plot to a postscript file
tprint, 'mms4\_hpca\_hplus\_flux\_fullFoV', /landscape

# https://lasp.colorado.edu/mms/sdc/public/datasets/hpca/

### Loading and Plotting Data HPCA



### Loading and Plotting Data EPD EIS

; load the EIS energy x time of flight (ExTOF) ion data for MMS1 mms\_load\_eis, probe=1, data\_rate='srvy', datatype='extof', trange=['2015-10-16', '2015-10-17']

; calculate the EIS pitch angle distribution
mms\_eis\_pad, probe=1, data\_rate='srvy', datatype='extof'

; plot the spin-averaged energy spectra and pitch angle distribution tplot, ['mms1\_epd\_eis\_extof\_proton\_flux\_omni\_spin', 'mms1\_epd\_eis\_extof\_0-1000keV\_proton\_flux\_omni\_pad\_spin']

; save the plot to a postscript file
tprint, 'mms1\_epd\_eis\_extof\_protons', /landscape

### https://lasp.colorado.edu/mms/sdc/public/datasets/epd/



### Loading and Plotting Data EPD EIS



### Loading and Plotting Data EPD FEEPS

; load the FEEPS electron data for MMS2
mms\_load\_feeps, probe=2, data\_rate='srvy', datatype='electron', trange=['2015-10-16', '2015-10-17']

; calculate the FEEPS pitch angle distribution
mms\_feeps\_pad, probe=2, data\_rate='srvy', datatype='electron'

; plot the spin averaged electron spectra and pitch angle distribution tplot, ['mms2\_epd\_feeps\_srvy\_l2\_electron\_intensity\_omni\_spin', 'mms2\_epd\_feeps\_srvy\_l2\_electron\_intensity\_70-1000keV\_pad\_spin']

; save the plot to a postscript file
tprint, 'mms2\_epd\_feeps\_electrons', /landscape

### https://lasp.colorado.edu/mms/sdc/public/datasets/epd/

### Loading and Plotting Data EPD FEEPS



### Loading and Plotting Data MEC

; load the ephemeris and coordinates data for October 16, 2015 mms\_load\_mec, probe=1, trange=['2015-10-16', '2015-10-17']

; plot the spacecraft position and velocity in GSM coordinates
tplot, ['mms1\_mec\_r\_gsm', 'mms1\_mec\_v\_gsm']



### Loading and Plotting Data Tetrahedron Formation

; create the formation plot in GSM coordinates, including the tetrahedron quality factor mms\_mec\_formation\_plot, '2015-10-16/13:07', coord='gsm', /quality\_factor



### Analysis Tools

- Curlometer Calculations
- Coordinate Transformations
- Minimum Variance Analysis
- Dynamic Power Spectra
- Spectra from Particle Distributions
- 2D Particle Slices
- Visualizing the Distributions in 3D

### Analysis Tools Curlometer Calculations

trange = ['2015-10-30/05:15:45', '2015-10-30/05:15:48']

```
mms_load_fgm, trange=trange, /get_fgm_ephemeris, probes=[1, 2, 3, 4], data_rate='brst'
fields = 'mms'+['1', '2', '3', '4']+'_fgm_b_gse_brst_l2'
positions = 'mms'+['1', '2', '3', '4']+'_fgm_r_gse_brst_l2'
mms_curl, trange=trange, fields=fields, positions=positions, suffix='_mms_curl'
tplot, ['divB','curlB','jtotal','jperp','jpar','baryb']+'_mms_curl'
```

Examples Getting Help

### Analysis Tools Curlometer Calculations



### Analysis Tools Coordinate Transformations

; load the quaternions from the MEC file
mms\_load\_mec, probe=3, trange=['2015-10-16/08:00', '2015-10-16/16:00'], /time\_clip

; we're going to transform some FGM data
mms\_load\_fgm, probe=3, trange=['2015-10-16/08:00', '2015-10-16/16:00'], /time\_clip

; Cotrans the FGM data from GSM to SM coordinates mms\_qcotrans, 'mms3\_fgm\_b\_gsm\_srvy\_l2\_bvec', 'mms3\_fgm\_b\_sm\_srvy\_l2\_bvec', out\_coord='sm'

; plot the data in both GSM and SM coordinates
tplot, ['mms3\_fgm\_b\_gsm\_srvy\_l2\_bvec', 'mms3\_fgm\_b\_sm\_srvy\_l2\_bvec']

; save the plot to a postscript file
tprint, 'mms3\_fgm\_gsm\_sm\_coords', /landscape

Examples Getting Help

### Analysis Tools Coordinate Transformations



### Analysis Tools Minimum Variance Analysis

```
; load some FGM data
mms_load_fgm, probe=1, trange=['2015-10-16/08:00', '2015-10-16/16:00'], /time_clip
; create the minimum variance transformation matrix
minvar_matrix_make, 'mms1_fgm_b_gse_srvy_l2_bvec', newname='mva_matrix', $
tstart='2015-10-16/13:00', tstop='2015-10-16/13:10'
; rotate the B-field
```

tvector\_rotate, 'mva\_matrix', 'mms1\_fgm\_b\_gse\_srvy\_l2\_bvec', newname='mms1\_fgm\_b\_gse\_srvy\_l2\_bvec\_mva'

; plot the vector in MVA coordinates
tplot, 'mms1\_fgm\_b\_gse\_srvy\_l2\_bvec\_mva'

```
; save the plot to a postscript file
tprint, 'mms1_fgm_b_gse_srvy_l2_bvec_mva', /landscape
```

### tting Data Analysis Tools Minimum Varianaa An



Getting Started Loading and Plotting Data **Analysis Tools** 

Examples Getting Help

### Analysis Tools Dynamic Power Spectra

```
; load some SCM data
mms_load_scm, probe=1, trange=['2015-10-16/00:00', '2015-10-16/04:00']
```

; calculate the dynamic power spectra
tdpwrspc, 'mms1\_scm\_acb\_gse\_scsrvy\_srvy\_l2', nboxpoints=512,nshiftpoints=512,bin=1

; plot the dynamic power spectra
tplot, ['mms1\_scm\_acb\_gse\_scsrvy\_srvy\_l2\_x\_dpwrspc', \$
 'mms1\_scm\_acb\_gse\_scsrvy\_srvy\_l2\_y\_dpwrspc', \$
 'mms1\_scm\_acb\_gse\_scsrvy\_srvy\_l2\_z\_dpwrspc']

; save the plot to a postscript file
tprint, 'mms1\_scm\_acb\_gse\_scsrvy\_l2\_dpwrspc', /landscape

Examples Getting Help

### Analysis Tools Dynamic Power Spectra



### Analysis Tools Spectra from FPI Distributions

; calculate the electron energy spectra from the FPI distribution functions
mms\_part\_getspec, instrument='fpi', probe=1, species='e', trange=['2015-10-16/04:00',
'2015-10-16/06:00'], outputs=['energy']

; plot the spectra
tplot, 'mms1\_des\_dist\_fast\_energy'

; save the plot to a postscript file
tprint, 'mms1\_des\_dist\_fast\_energy', /landscape

### Loading and Plotting Data **Analysis Tools** Analysis Tools

Getting Started

Examples

Getting Help

# Spectra from FPI Distributions



### Analysis Tools Spectra from HPCA Distributions

; we can do the same thing with the HPCA distribution functions mms\_part\_getspec, instrument='hpca', probe=2, species='hplus', trange=['2015-10-16/04:00', '2015-10-16/06:00'], outputs=['energy']

tplot, 'mms2\_hpca\_hplus\_phase\_space\_density\_energy'

; save the plot to a postscript file
tprint, 'mms2\_hpca\_hplus\_phase\_space\_density\_energy', /landscape

# Analysis Tools Spectra from HPCA Distributions



Getting Started Loading and Plotting Data

#### **Analysis Tools**

Examples Getting Help

### Analysis Tools 2D Particle Slices

```
; load some burst mode FPI data
mms_load_fpi, data_rate='brst', datatype='dis-dist', probe=1, trange=['2015-10-16/13:06',
'2015-10-16/13:07']
```

```
; reformat data from tplot variable into compatible 3D structures
dist = mms_get_dist('mms1_dis_dist_brst', trange=['2015-10-16/13:06', '2015-10-16/13:07'])
```

```
; get the single distribution
slice = spd_slice2d(dist, time='2015-10-16/13:06:00') ;3D interpolation
```

; plot the slice spd\_slice2d\_plot, slice

# Analysis Tools 2D Particle Slices



**Analysis Tools** Examples Getting Help

**Getting Started** 

Loading and Plotting Data

### Analysis Tools Visualizing the Distributions in 3D

trange = ['2015-10-20/05:56:30', '2015-10-20/05:56:34']

```
;get +- 60 seconds of support data (FGM and FPI velocity)
support_trange= time_double(trange) + [-60,60]
```

; load the FPI electron distribution data
mms\_load\_fpi, probe=1, trange=trange, data\_rate='brst', datatype='des-dist'

```
; load data into standard structures
dist = mms_get_fpi_dist('mms1_des_dist_brst', trange=trange)
```

```
; convert structures to isee_3d data model
data = spd_dist_to_hash(dist)
```

; load B-field (cyan vector) and velocity (yellow vector) support data mms\_load\_fgm, probe=1, trange=support\_trange mms\_load\_fpi, data\_rate='brst', datatype='des-moms', probe=1, trange=support\_trange

```
; Once GUI is open select PSD from Units menu
isee_3d, data=data, trange=trange, bfield= 'mms1_fgm_b_gse_srvy_l2_bvec',
velocity='mms1_des_bulkv_dbcs_brst'
```

# Analysis Tools Visualizing the Distributions in 3D



Getting Started Loading and Plotting Data Analysis Tools

Examples

Getting Help

Getting Help

### Examples Where to find more examples?

/projects/mms/examples/basic/

Basic examples for each load routine; this is a good place for new users to start

### /projects/mms/examples/advanced/

Examples showing more advanced functionality of the plugin

### /projects/mms/examples/quicklook/

Scripts that create the QL plots at the SDC; note: these require MMS team member access to the SDC to run

#### Getting Started Loading and Plotting Data Analysis Tools MMS FPI angle-angle, PA-energy Plots Examples Getting Help /projects/mms/examples/basic/mms\_fpi\_angle\_angle\_crib.pro

mms\_fpi\_ang\_ang, '2016-12-07/14:42:45', species='i', data\_rate='brst'



# MMS FPI angle-energy Plots

Getting Help

/projects/mms/examples/basic/mms\_fpi\_angle\_angle\_crib.pro

mms\_fpi\_ang\_ang, '2016-12-07/14:42:45', species='i', data\_rate='brst'



# MMS EIS angle-angle Plots

Getting Help

/projects/mms/examples/basic/mms\_eis\_angle\_angle\_crib.pro

; to plot the angle-angle plots for EIS, use the following tool

; developed by Ian Cohen and Joe Westlake at JHU/APL

eis\_ang\_ang, probe='1', trange=['2015-12-15/13:00', '2015-12-15/13:10'], energy\_chan=[1, 2, 3, 4]

# MMS EIS angle-angle Plots

Getting Help

**Examples** 

/projects/mms/examples/basic/mms\_eis\_angle\_angle\_crib.pro



# MMS Wave Polarization Analysis

Getting Help

**Examples** 

/projects/mms/examples/advanced/mms\_wavpol\_crib.pro



# MMS Plasma Beta Calculation

**Examples** Getting Help

/projects/mms/examples/basic/mms\_plasma\_beta\_crib.pro



# MMS FPI Distribution Slices

Getting Help

### /projects/mms/examples/advanced/mms\_fpi\_dist\_slice\_comparison\_crib\_l2.pro



# MMS FPI Error Bars

**Examples** Getting Help

/projects/mms/examples/basic/mms\_error\_bars\_crib.pro



# MMS Multi-Axis Figures

**Examples** Getting Help

/projects/mms/examples/advanced/mms\_multi\_axis\_figure.pro



# Getting Help

• SPEDAS Forum

https://groups.google.com/forum/#!forum/spedas

SPEDAS Wiki

# http://spedas.org/wiki/

Ask Eric

egrimes@igpp.ucla.edu

Getting Help Download

Download this presentation:

http://spedas.org/mms/mms\_gem\_2017.pdf

Download the code in this presentation: http://spedas.org/mms/mms\_gem\_2017.pro

### SPEDAS Other Useful Crib Sheets

general/examples/crib\_tplot.pro

general/examples/crib\_tplot\_annotation.pro

general/examples/crib\_tplot\_layout.pro

general/examples/crib\_tplot\_range.pro

general/examples/crib\_tplot\_ticks.pro

general/examples/crib\_dproc.pro