

Analyzing MMS Data with SPEDAS and pySPEDAS

Eric Grimes (egrimes@igpp.ucla.edu)

December 8, 2019

Overview

What's New / Plug-in Status

IDL

- Getting Started
- Loading and Plotting Data
- Analysis Tools

Python

- Getting Started
- Loading and Plotting Data
- Analysis Tools

IDL

Getting Started
Loading and Plotting Data
Analysis Tools
Python
Getting Started
Loading and Plotting Data
Analysis Tools

What's New / Plug-in Status

- 500+ unit/regression tests, all passing
- Initial IDL<->Python cross-validation tests
- pySPEDAS
 - Wrappers with pythonic function names
 - FEEPS, EIS omni-directional spectra
 - FEEPS, EIS PADs
 - Orbit plots
 - Keywords to limit the CDF file versions loaded
 - Load data from network mirrors instead of the SDC

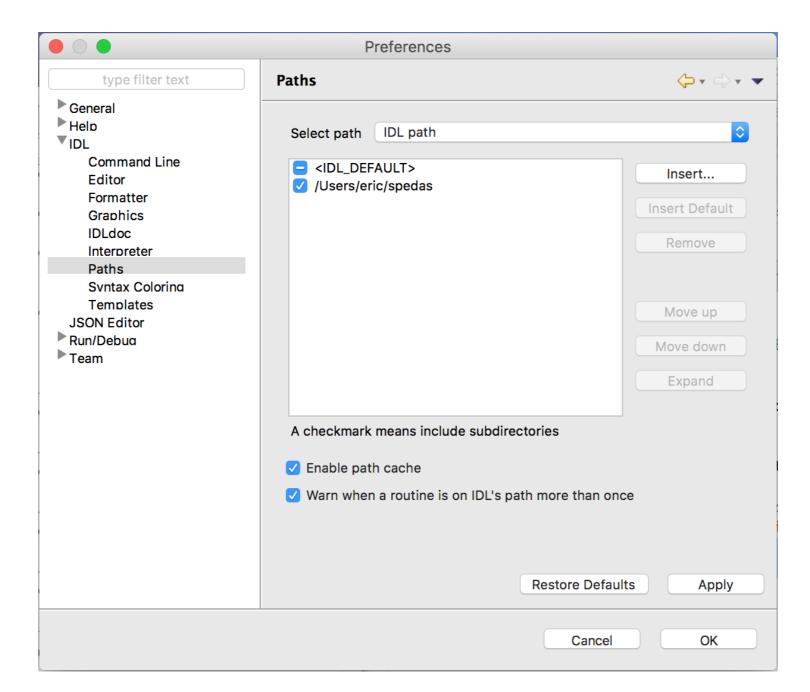
Getting Started

Loading and Plotting Data Analysis Tools Python Getting Started Loading and Plotting Data Analysis Tools

Getting Started

Requirements

- Windows, Linux, or OS X
- IDL 8.4+
- IDL CDF Library 3.6.3+


Getting Started

Loading and Plotting Data Analysis Tools Python Getting Started Loading and Plotting Data Analysis Tools

Getting Started

Installing SPEDAS

http://spedas.org/wiki/index.php?title=Downloads_and_Installation

Getting Started

Loading and Plotting Data Analysis Tools Python Getting Started Loading and Plotting Data Analysis Tools

Getting Started

Organization

spedas_gui: Components of the SPEDAS Graphical User Interface (GUI)

external: Code developed externally, but distributed with SPEDAS (CDAWeb, Geopack, etc.)

projects: Mission specific code

general: General science analysis tools

Getting Started

Loading and Plotting Data Analysis Tools Python Getting Started Loading and Plotting Data Analysis Tools

Getting Started

MMS Load Routines

mms_load_fgm	Fluxgate Magnetometer
mms_load_scm	Search-coil Magnetometer
mms_load_fsm	L3 FGM+SCM
mms_load_mec	Ephemeris and Coordinates
mms_load_fpi	Fast Plasma Investigation
mms_load_hpca	Hot Plasma Composition Analyzer
mms_load_eis	Energetic Ion Spectrometer
mms_load_feeps	Fly's Eye Energetic Particle Sensor
mms_load_edp	Electric-field Double Probe
mms_load_edi	Electron Drift Instrument
mms_load_dsp	Digital Signal Processor
mms_load_aspoc	Active Spacecraft Potential Control
mms_load_tetrahedron_qf	Tetrahedron Quality Factor
mms_load_fast_segments	Fast survey intervals
mms_load_brst_segments	Burst intervals

Getting Started

Loading and Plotting Data Analysis Tools
Python
Getting Started
Loading and Plotting Data
Analysis Tools

- trange
- probes
- level
- data_rate
- datatype

Getting Started

Standard Keywords

```
trange=['2015-10-16', '2015-10-17']
```

```
probes=[1, 2, 3, 4]
```

level='12'

data_rate='srvy'

datatype=['des-moms', 'dis-moms']

Getting Started

Loading and Plotting Data Analysis Tools Python Getting Started Loading and Plotting Data Analysis Tools

Getting Started

Standard Keywords

suffix

• time_clip

no_update

spdf

tplotnames

suffix='_burst_mode'

/time_clip

/no_update

/spdf

tplotnames=tvarnames

Getting Started

Loading and Plotting Data Analysis Tools Python Getting Started Loading and Plotting Data Analysis Tools

Getting Started

Standard Keywords

```
cdf_version
```

min_version

latest_version

major_version

min_version='4.3.0'

/latest_version

/major_version

Getting Started

Loading and Plotting Data Analysis Tools
Python
Getting Started
Loading and Plotting Data
Analysis Tools

Getting Started

Standard Keywords

For a complete list of keywords and their descriptions, see the header for the load routine you're interested in, e.g.,

```
PROCEDURE:
        mms_load_fpi
PURPOSE:
        Load data from the Fast Plasma Investigation (FPI) onboard MMS
KEYWORDS:
                      time range of interest [starttime, endtime] with the format
        trange:
                      ['YYYY-MM-DD', 'YYYY-MM-DD'] or to specify more or less than a day
                      ['YYYY-MM-DD/hh:mm:ss','YYYY-MM-DD/hh:mm:ss']
                      list of probes, valid values for MMS probes are ['1','2','3','4'].
        probes:
                      If no probe is specified the default is probe '3'
                      indicates level of data processing. FPI levels currently include '12',
        level:
                      'l1b', 'sitl', 'ql'.
                     valid datatypes are:
        datatype:
                        Quicklook: ['des', 'dis']
                        SITL: '' (none; loads both electron and ion data from single CDF)
                        L1b/L2: ['des-dist', 'dis-dist', 'dis-moms', 'des-moms']
                     instrument data rates for MMS FPI include 'fast', 'brst'.
        data_rate:
        local_data_dir: local directory to store the CDF files; should be set if
                      you're on *nix or OSX, the default currently assumes Windows (c:\data\mms\)
                      specifies a different system variable. By default the MMS mission system
        source:
                      variable is !mms
        get_support_data: load support data (defined by support_data attribute in the CDF)
        tplotnames: returns a list of the names of the tplot variables loaded by the load routine
        no_color_setup: don't setup graphics configuration; use this keyword when you're
                      using this load routine from a terminal without an X server running
                     clip the data to the requested time range; note that if you do not use
        time_clip:
                      this keyword you may load a longer time range than requested
```

Getting Started

Loading and Plotting Data

Analysis Tools
Python
Getting Started
Loading and Plotting Data
Analysis Tools

Loading and Plotting Data

Simple Example

```
; load the MMS1 FGM data for October 16, 2015
mms_load_fgm, probe=1, data_rate='srvy', trange=['2015-10-16', '2015-10-17']
; list the tplot variables loaded
tplot_names
; get the data out of a tplot variable
get_data, 'mms1_fgm_b_gsm_srvy_l2_bvec', data=bgsm_vec, dlimits=bgsm_metadata
; get basic info on the IDL vars that hold the B-field data
help, bgsm_vec; structure, x: times, y: data (x, y, z)
help, bgsm_metadata; plotting and file metadata
; store the data into a different tplot variable
store_data, 'new_var_with_b_gsm', data=bgsm_vec, dlimits=bgsm_metadata
```

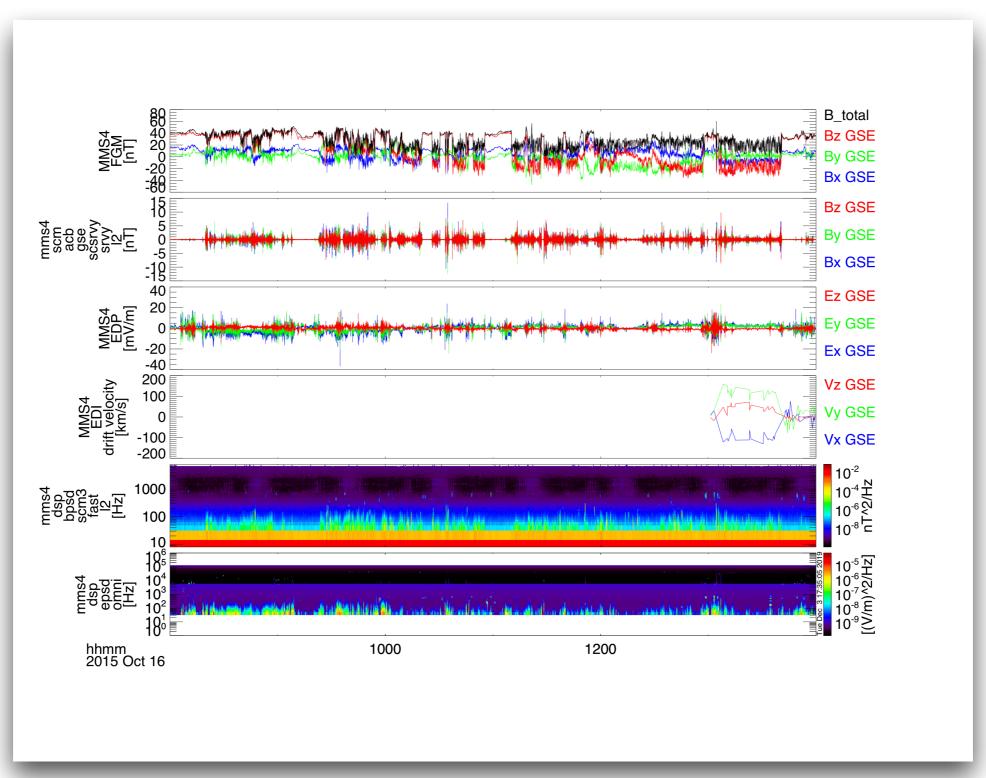
Getting Started

Loading and Plotting Data

Analysis Tools
Python
Getting Started
Loading and Plotting Data
Analysis Tools

Loading and Plotting Data

FIELDS


Getting Started

Loading and Plotting Data

Analysis Tools
Python
Getting Started
Loading and Plotting Data
Analysis Tools

Loading and Plotting Data

FIELDS

What's New / Plug-in Status IDL
Getting Started
Loading and Plotting Data
Analysis Tools
Python
Getting Started

Loading and Plotting Data

Analysis Tools

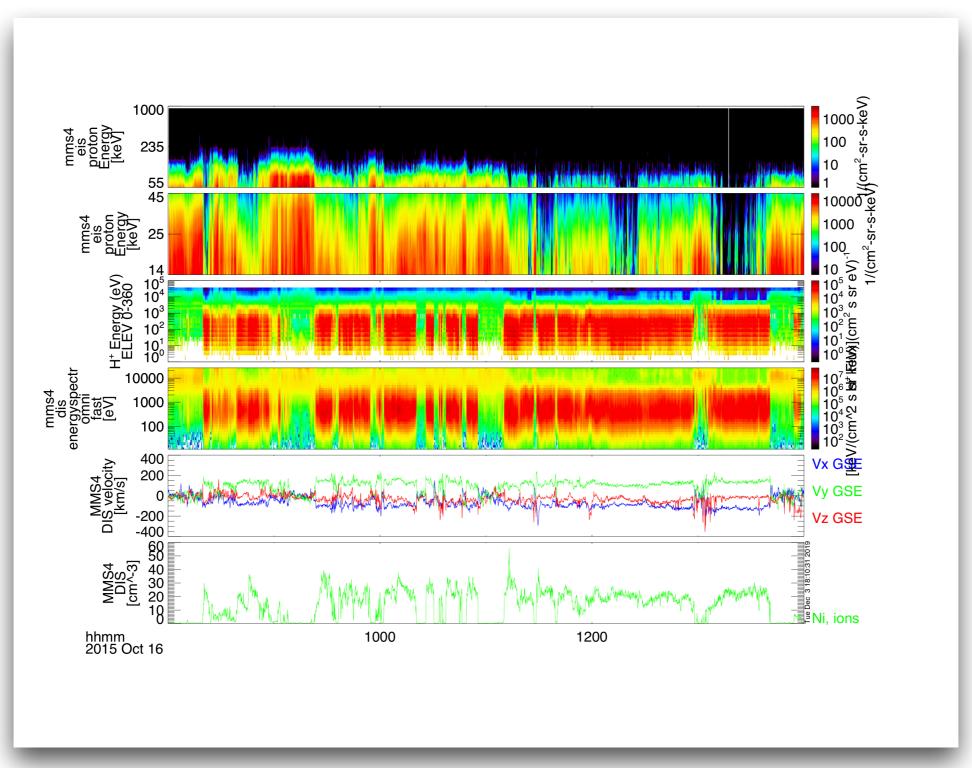
Loading and Plotting Data

Ions

```
mms_load_eis, datatype=['extof', 'phxtof'], probe=4, trange=trange, /time_clip
mms_load_fpi, /center_measurement, datatype='dis-moms', probe=4, trange=trange, /time_clip
mms_load_hpca, /center_measurement, datatype='ion', probe=4, trange=trange, /time_clip

mms_hpca_calc_anodes, fov=[0, 360]; sum over the full field of view
mms_hpca_spin_sum, probe=4, /avg; spin-average to create the omni-directional data product

tplot, ['mms4_epd_eis_extof_proton_flux_omni', $
    'mms4_epd_eis_phxtof_proton_flux_omni', $
    'mms4_hpca_hplus_flux_elev_0-360_spin', $
    'mms4_dis_energyspectr_omni_fast', $
    'mms4_dis_bulkv_gse_fast', $
    'mms4_dis_numberdensity_fast']
```


Getting Started

Loading and Plotting Data

Analysis Tools
Python
Getting Started
Loading and Plotting Data
Analysis Tools

Loading and Plotting Data

Ions

Getting Started

Loading and Plotting Data

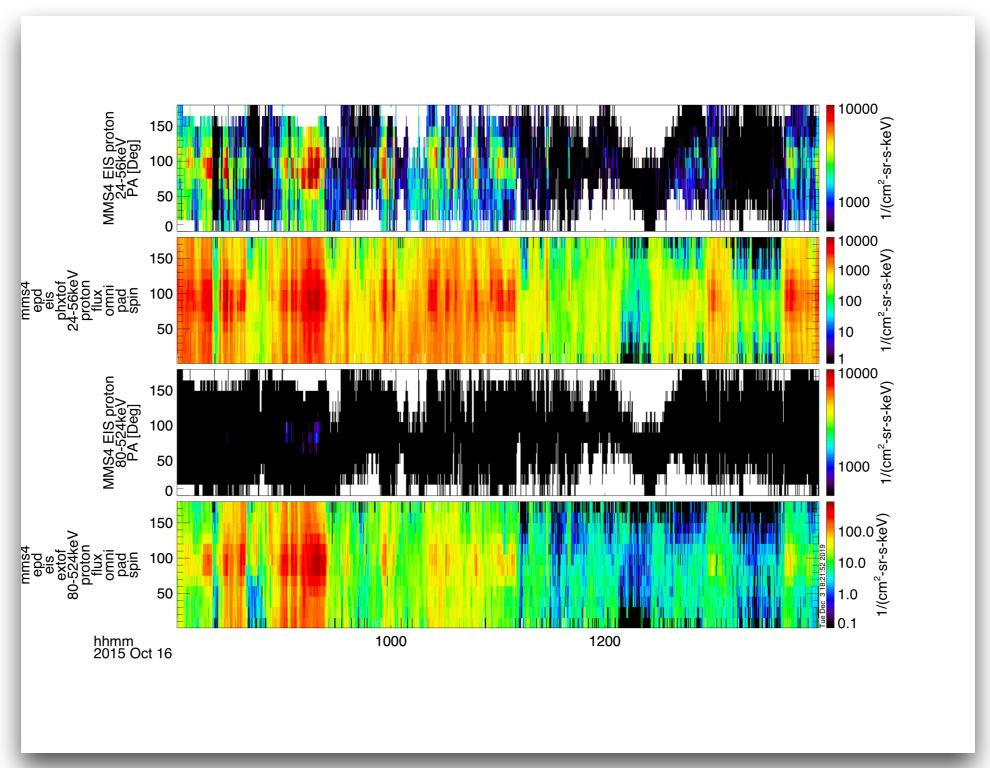
Analysis Tools
Python
Getting Started
Loading and Plotting Data
Analysis Tools

Loading and Plotting Data

Ion pitch angle distributions

```
mms_eis_pad, energy=[20, 60], datatype='phxtof', probe=4
mms_eis_pad, energy=[56, 550], datatype='extof', probe=4

tplot, ['mms4_epd_eis_phxtof_24-56keV_proton_flux_omni_pad', $
    'mms4_epd_eis_phxtof_24-56keV_proton_flux_omni_pad_spin', $
    'mms4_epd_eis_extof_80-524keV_proton_flux_omni_pad', $
    'mms4_epd_eis_extof_80-524keV_proton_flux_omni_pad_spin']
```


Getting Started

Loading and Plotting Data

Analysis Tools
Python
Getting Started
Loading and Plotting Data
Analysis Tools

Loading and Plotting Data

Ion pitch angle distributions

What's New / Plug-in Status IDL
Getting Started
Loading and Plotting Data
Analysis Tools
Python
Getting Started

Loading and Plotting Data

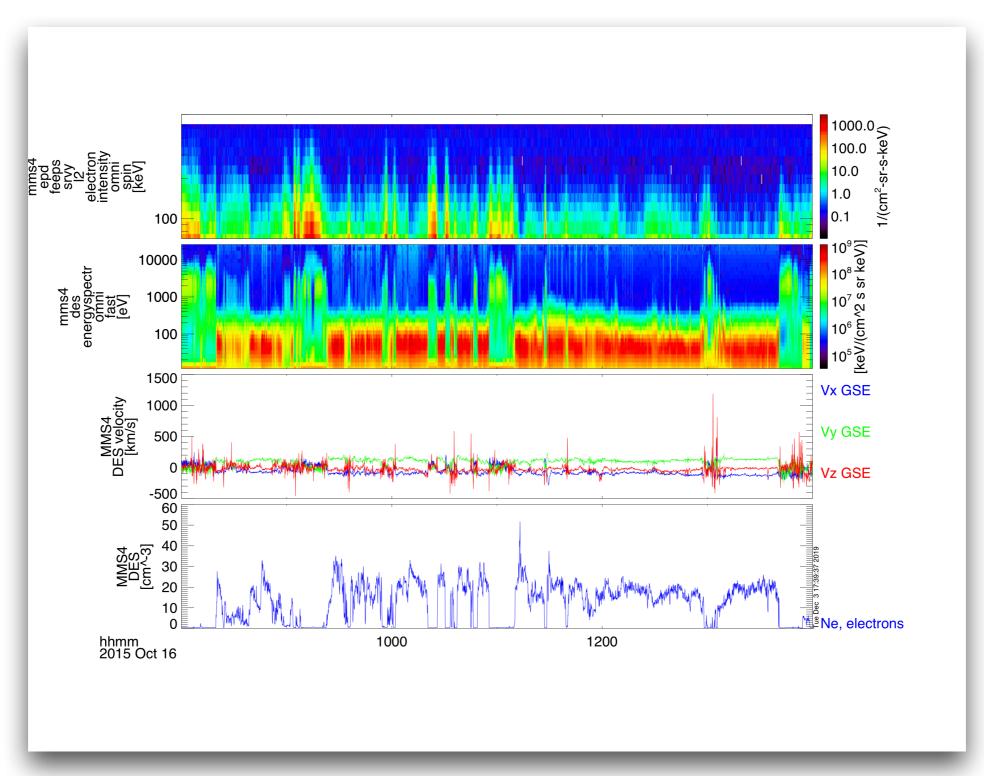
Analysis Tools

Loading and Plotting Data

Electrons

```
mms_load_fpi, /center_measurement, datatype='des-moms', probe=4, trange=trange, /time_clip
mms_load_feeps, datatype='electron', probe=4, trange=trange, /time_clip

tplot, ['mms4_epd_feeps_srvy_l2_electron_intensity_omni_spin', $
    'mms4_des_energyspectr_omni_fast', $
    'mms4_des_bulkv_gse_fast', $
    'mms4_des_numberdensity_fast']
```


Getting Started

Loading and Plotting Data

Analysis Tools
Python
Getting Started
Loading and Plotting Data
Analysis Tools

Loading and Plotting Data

Electrons

Getting Started

Loading and Plotting Data

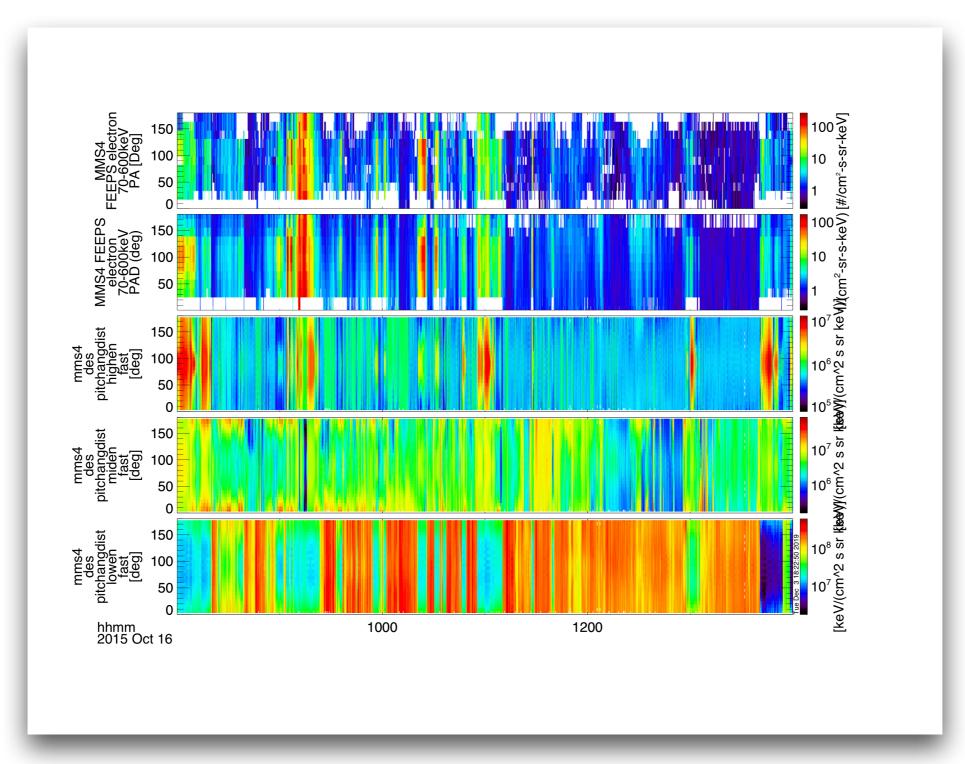
Analysis Tools
Python
Getting Started
Loading and Plotting Data
Analysis Tools

Loading and Plotting Data

Electron pitch angle distributions

```
mms_feeps_pad, energy=[70, 600], datatype='electron', probe=4

tplot, ['mms4_epd_feeps_srvy_l2_electron_intensity_70-600keV_pad', $
    'mms4_epd_feeps_srvy_l2_electron_intensity_70-600keV_pad_spin', $
    'mms4_des_pitchangdist_highen_fast', $
    'mms4_des_pitchangdist_miden_fast', $
    'mms4_des_pitchangdist_lowen_fast']
```


Getting Started

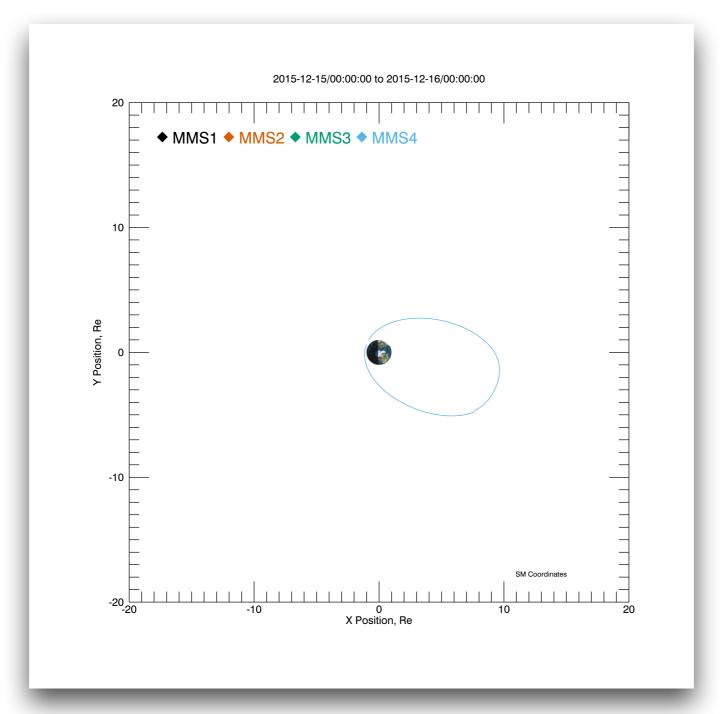
Loading and Plotting Data

Analysis Tools
Python
Getting Started
Loading and Plotting Data
Analysis Tools

Loading and Plotting Data

Electron pitch angle distributions

Getting Started


Loading and Plotting Data

Analysis Tools
Python
Getting Started
Loading and Plotting Data
Analysis Tools

Loading and Plotting Data

Plotting Orbits

mms_orbit_plot, coord='sm', probe=[1, 2, 3, 4], trange=['2015-12-15', '2015-12-16'], yrange=[-20, 20], xrange=[-20, 20]

Getting Started Loading and Plotting Data

Analysis Tools

Python
Getting Started
Loading and Plotting Data
Analysis Tools

Analysis Tools

mms_curl	Curlometer technique
tdpwrspc	SCM dynamic power spectra
mms_part_getspec	Calculate spectra from FPI/HPCA distributions
mms_part_slice2d	Plot 2D slices of FPI/HPCA distributions
mms_part_isee3d	Plot FPI/HPCA distributions in 3D
mms_flipbookify	Combine FPI/HPCA 2D slices with tplot windows
eis_ang_ang	Create EIS angle-angle plots
mms_fpi_ang_ang	Create FPI angle-angle plots
mms_hpca_ang_ang	Create HPCA angle-angle plots

What's New / Plug-in Status IDL Getting Started

Loading and Plotting Data

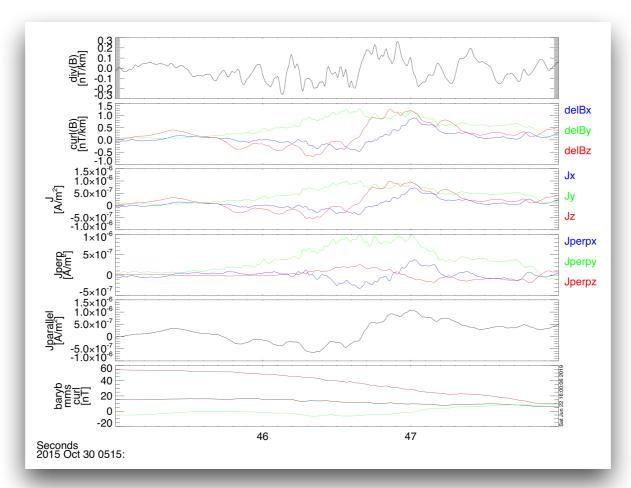
Analysis Tools

Python
Getting Started
Loading and Plotting Data
Analysis Tools

Analysis Tools

Curlometer technique

```
trange = ['2015-10-30/05:15:45', '2015-10-30/05:15:48']


mms_load_fgm, trange=trange, /get_fgm_ephemeris, probes=[1, 2, 3, 4], data_rate='brst'

fields = 'mms'+['1', '2', '3', '4']+'_fgm_b_gse_brst_l2'

positions = 'mms'+['1', '2', '3', '4']+'_fgm_r_gse_brst_l2'

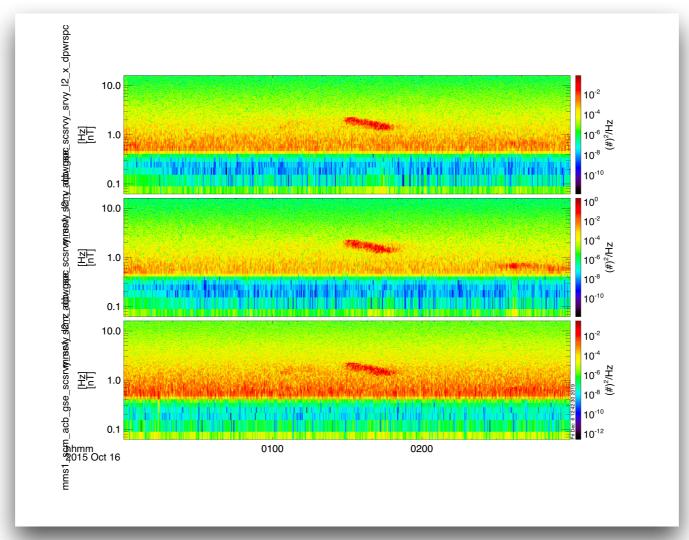
mms_curl, trange=trange, fields=fields, positions=positions, suffix='_mms_curl'

tplot, ['divB','curlB','jtotal','jperp','jpar','baryb']+'_mms_curl'
```


Getting Started Loading and Plotting Data

Analysis Tools

Python
Getting Started
Loading and Plotting Data
Analysis Tools


Analysis Tools

SCM dynamic power spectra

```
mms_load_scm, trange=['2015-10-16', '2015-10-16/03:00'], /time_clip

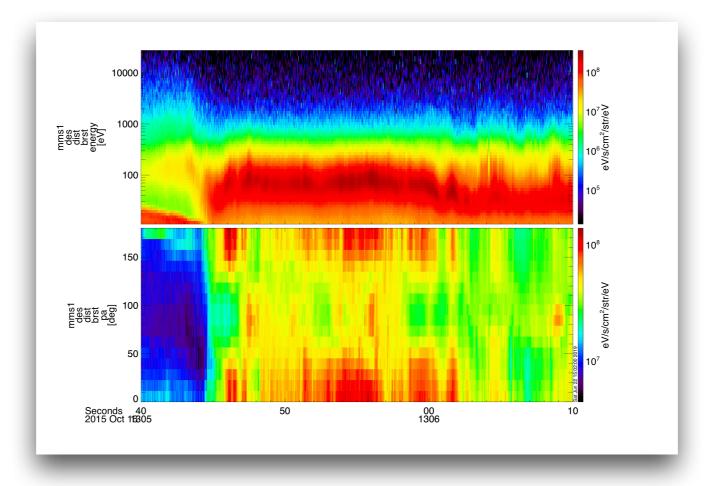
tdpwrspc, 'mms1_scm_acb_gse_scsrvy_srvy_l2', nshiftpoints=512, nboxpoints=512, bin=1

tplot, ['mms1_scm_acb_gse_scsrvy_srvy_l2_x_dpwrspc', $
    'mms1_scm_acb_gse_scsrvy_srvy_l2_y_dpwrspc', $
    'mms1_scm_acb_gse_scsrvy_srvy_l2_z_dpwrspc']
```


Getting Started Loading and Plotting Data

Analysis Tools

Python
Getting Started
Loading and Plotting Data
Analysis Tools

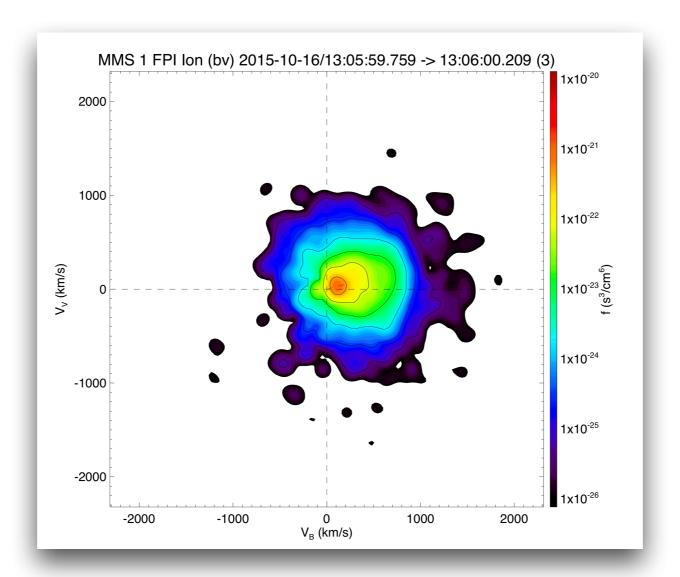

Analysis Tools

Calculate spectra from FPI/HPCA distributions

```
; use short time range for data due to high resolution
timespan, '2015-10-16/13:05:40', 30, /sec

; generate products
mms_part_getspec, instrument='fpi', probe='1', species='e', data_rate='brst', level='12', outputs=['energy', 'pa']

; plot spectrograms
tplot, 'mms1_des_dist_brst_'+['energy', 'pa']
```



Getting Started Loading and Plotting Data

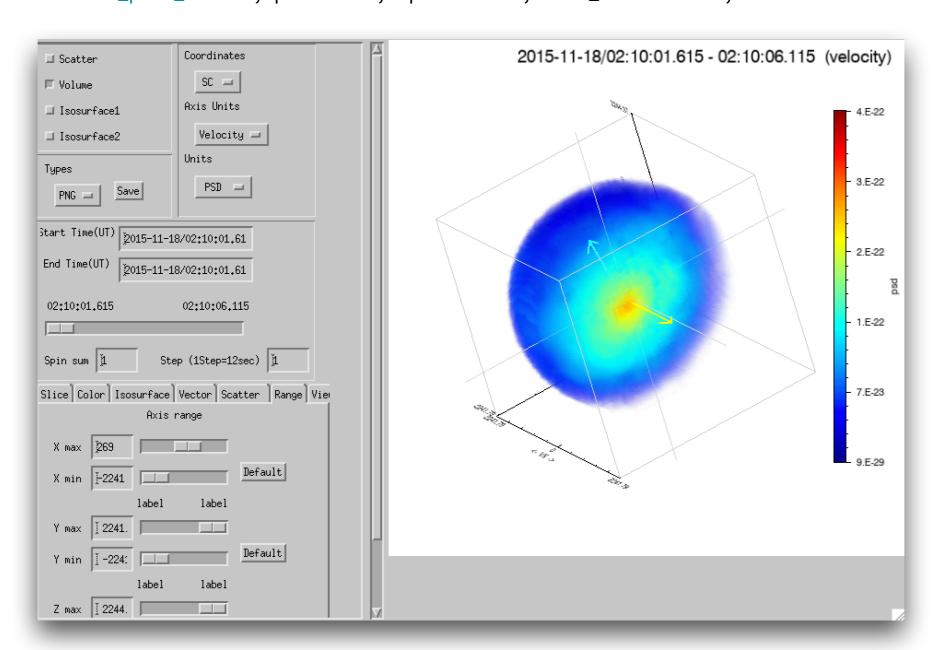
Analysis Tools

Python
Getting Started
Loading and Plotting Data
Analysis Tools

Analysis Tools

Plot 2D slices of FPI/HPCA distributions

Getting Started Loading and Plotting Data


Analysis Tools

Python
Getting Started
Loading and Plotting Data
Analysis Tools

Analysis Tools

Plot FPI/HPCA distributions in 3D

```
timespan, '2015-11-18/02:10:00', 10, /sec
mms_part_isee3d, probe='1', species='i', data_rate='fast', level='l2'
```

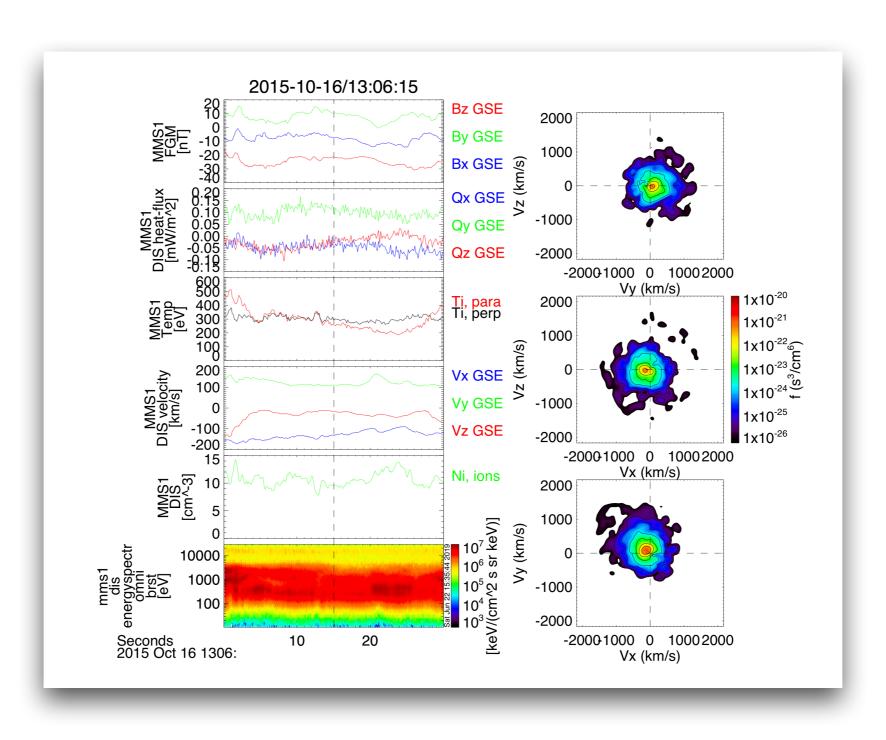

What's New / Plug-in Status IDL **Getting Started** Loading and Plotting Data **Analysis Tools**

Python **Getting Started** Loading and Plotting Data **Analysis Tools**

Analysis Tools

Combine FPI/HPCA 2D slices with tplot windows

```
trange=\lceil '2015-10-16/13:06:00', '2015-10-16/13:06:30' \rceil
probe=1
data_rate = 'brst'
species = 'i'
mms_load_fqm, trange=trange, probe=probe, /time_clip
mms_load_fpi, trange=trange, probe=probe, datatype='d'+species+'s-moms', /time_clip, data_rate=data_rate
window, xsize=1000, ysize=650
; store the temperature in the same panel
store_data, 'temp', data='mms1_d'+species+'s_temppara_brst mms1_d'+species+'s_tempperp_brst'
tplot, ['mms1_fgm_b_gse_srvy_l2_bvec', 'mms1_dis_heatq_gse_brst', 'temp', 'mms1_d'+species+'s_bulkv_gse_brst', $
  'mms1_d'+species+'s_numberdensity_brst', 'mms1_d'+species+'s_energyspectr_omni_brst']
mms_flipbookify, time_step=10, probe=1, species='i', /postscript
```


Getting Started Loading and Plotting Data

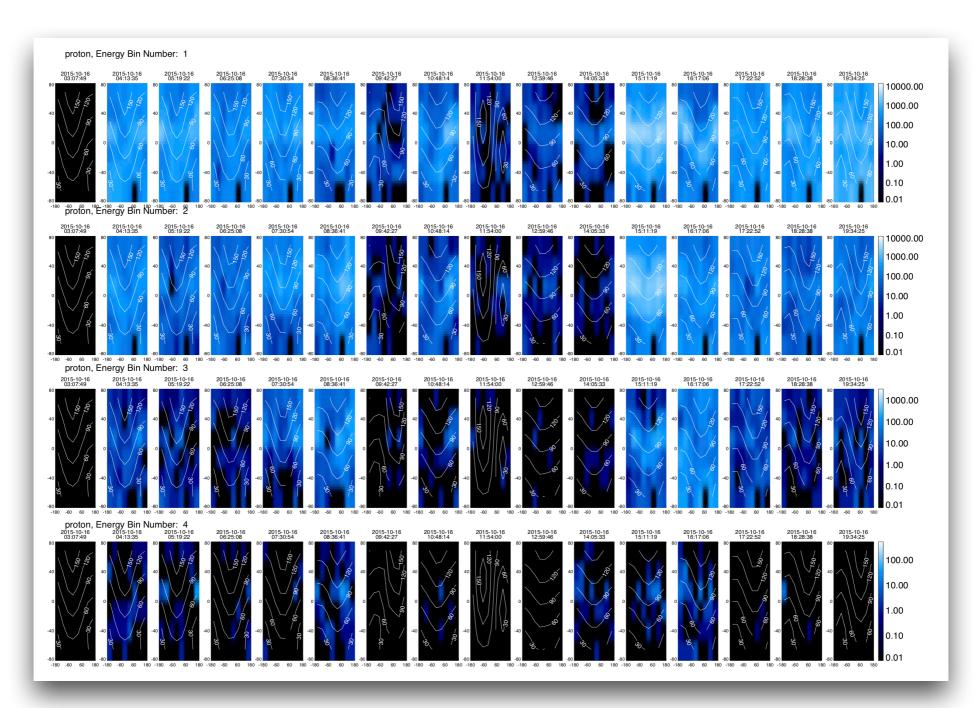
Analysis Tools

Python
Getting Started
Loading and Plotting Data
Analysis Tools

Analysis Tools

Combine FPI/HPCA 2D slices with tplot windows

Getting Started Loading and Plotting Data


Analysis Tools

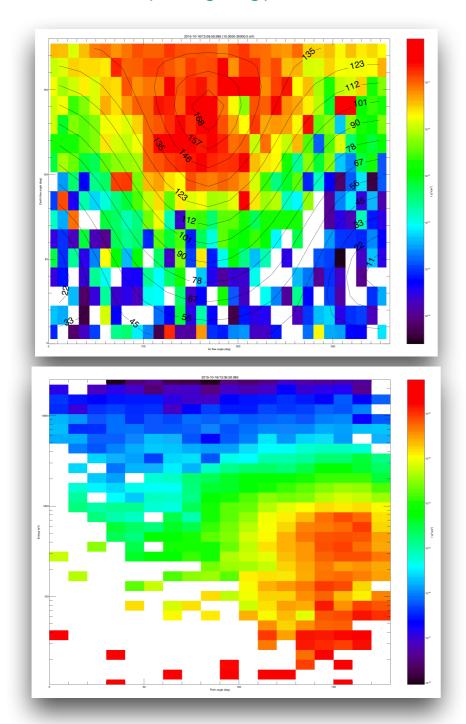
Python
Getting Started
Loading and Plotting Data
Analysis Tools

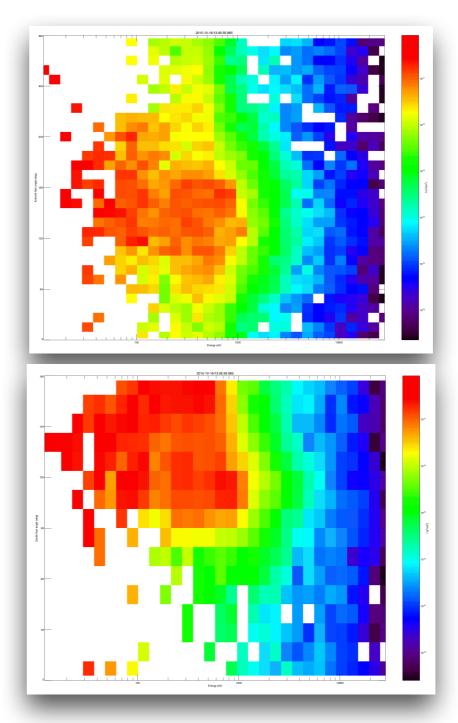
Analysis Tools

Create EIS angle-angle plots

eis_ang_ang, trange=['2015-10-16', '2015-10-17'], level='l2', probe=3, datatype='extof'

Getting Started Loading and Plotting Data


Analysis Tools

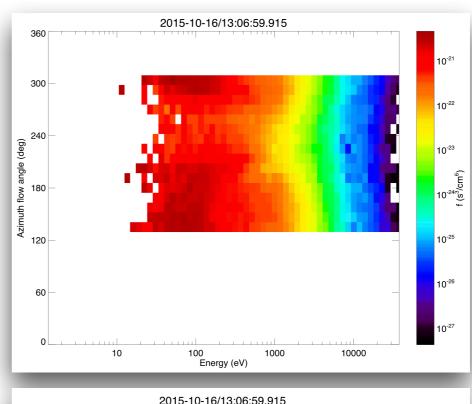

Python
Getting Started
Loading and Plotting Data
Analysis Tools

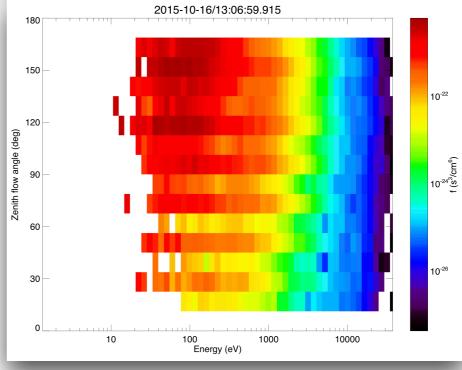
Analysis Tools

Create FPI angle-angle plots

mms_fpi_ang_ang, '2015-10-16/13:06:59.985', species='i', data_rate='brst'

Getting Started Loading and Plotting Data


Analysis Tools


Python
Getting Started
Loading and Plotting Data
Analysis Tools

2015-10-16/13:06:59.915 (0-40000 eV) 10²¹ 10²² 10²² 10²³ 10²⁴ 10²⁵

Analysis Tools

Create HPCA angle-angle plots

Getting Started Loading and Plotting Data

Analysis Tools

Python
Getting Started
Loading and Plotting Data
Analysis Tools

Analysis Tools

More Examples

Basic:

projects/mms/examples/basic/

Advanced:

projects/mms/examples/advanced/

Getting Started
Loading and Plotting Data
Analysis Tools
Python

Getting Started

Loading and Plotting Data Analysis Tools

Getting Started

Requirements

Python 3.5+

```
Required packages:
    pytplot
    cdflib
    pyqtgraph
    xarray
    numpy
    requests
    dateutil
```

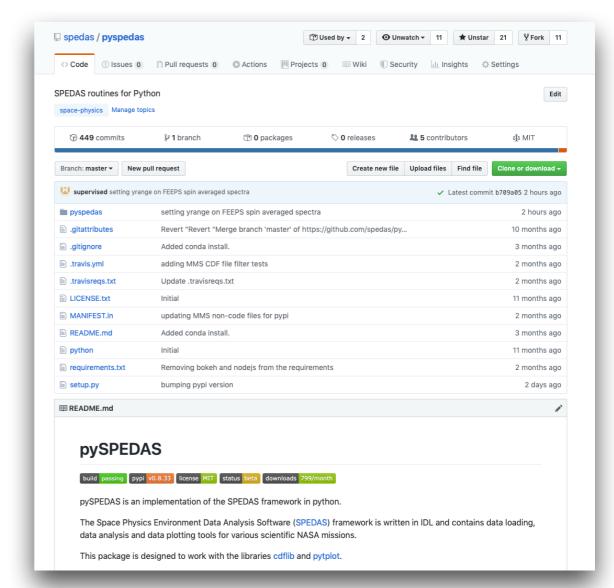

Getting Started

Loading and Plotting Data Analysis Tools

Getting Started

Installing pySPEDAS

Bleeding edge: https://github.com/spedas/pyspedas


Config settings (e.g., local_data_dir) are set in the hash table stored in mms_config.py

pip install pyspedas

or

pip install pyspedas --upgrade

to get the latest version

Getting Started

Loading and Plotting Data Analysis Tools

Getting Started

Configuring MMS in pySPEDAS

Getting Started

Loading and Plotting Data Analysis Tools

Getting Started

MMS Load Routines

Instrument	Wrapper with Pythonic name	IDL syntax
Fluxgate Magnetometer	pyspedas.mms.fgm	mms_load_fgm
Search-coil Magnetometer	pyspedas.mms.scm	mms_load_scm
L3 FGM+SCM	pyspedas.mms.fsm	mms_load_fsm
Ephemeris and Coordinates	pyspedas.mms.mec	mms_load_mec
Fast Plasma Investigation	pyspedas.mms.fpi	mms_load_fpi
Hot Plasma Composition Analyzer	pyspedas.mms.hpca	mms_load_hpca
Energetic Ion Spectrometer	pyspedas.mms.eis	mms_load_eis
Fly's Eye Energetic Particle Sensor	pyspedas.mms.feeps	mms_load_feeps
Electric-field Double Probe	pyspedas.mms.edp	mms_load_edp
Electron Drift Instrument	pyspedas.mms.edi	mms_load_edi
Digital Signal Processor	pyspedas.mms.dsp	mms_load_dsp
Active Spacecraft Potential Control	pyspedas.mms.aspoc	mms_load_aspoc

What's New / Plug-in Status IDL Getting Started

Loading and Plotting Data Analysis Tools

Python

Getting Started

Loading and Plotting Data Analysis Tools

Getting Started

MMS Load Routines

```
# if you prefer the IDL syntax:
from pyspedas import mms_load_fgm
mms_load_fgm(probe=1, data_rate='srvy', trange=['2015-10-16', '2015-10-17'])

# if you prefer the pythonic syntax:
from pyspedas.mms import fgm
fgm_vars = fgm(probe=1, data_rate='srvy', trange=['2015-10-16', '2015-10-17'])

# you can also do:
import pyspedas
fgm_vars = pyspedas.mms.fgm(probe=1, data_rate='srvy', trange=['2015-10-16', '2015-10-17'])
```

Getting Started

Loading and Plotting Data Analysis Tools

- trange
- probe
- level
- data_rate
- datatype

Getting Started

Standard Keywords

```
trange=['2015-10-16', '2015-10-17']
```

Getting Started

Loading and Plotting Data Analysis Tools

- suffix
- time_clip
- no_update
- notplot
- varformat

Getting Started

Standard Keywords

Getting Started

Loading and Plotting Data Analysis Tools Python Getting Started Loading and Plotting Data Analysis Tools

Getting Started

Standard Keywords

cdf_version

cdf_version='4.3.1'

min_version

min_version='4.3.0'

latest_version

latest_version=True

major_version

major_version=True

Getting Started
Loading and Plotting Data
Analysis Tools
Python

Getting Started

Loading and Plotting Data Analysis Tools

Getting Started

Standard Keywords

For a complete list of keywords and their descriptions, use the 'help' command, e.g., help(mms_load_fgm):

```
mms_lood_fgm(*args, **kwargs)
This function loads FGM data into tplot variables
       tranae : list of str
           time range of interest [starttime, endtime] with the format
'YYYY-MM-DD', 'YYYY-MM-DD'] or to specify more or less than a day
['YYYY-MM-DD/hh:mm:ss', 'YYYY-MM-DD/hh:mm:ss']
       probe : str or list of str
list of probes, valid values for MMS probes are ['1','2','3','4'].
       data_rate : str or list of str
            instrument data rates for FGM include 'brst' 'fast' 'slow' 'srvy'. The
            default is 'srvv'.
            indicates level of data processing, the default if no level is specified is '12'
           no datatype for FGM instrument (all science data are loaded)
           Data with an attribute "VAR_TYPE" with a value of "support_data"
            will be loaded into tplot. By default, only loads in data with a
             "VAR TYPE" attribute of "data".
           Data will be clipped to the exact trange specified by the trange keyword.
            The file variable formats to load into tplot. Wildcard character
             "*" is accepted. By default, all variables are loaded in.
            The tplot variable names will be given this suffix. By default,
           If True, then data are returned in a hash table instead of
           being stored in tplot variables (useful for debugging, and
            access to multi-dimensional data products)
            If True, simply return the available data files (without downloading)
           for the requested paramters
            Set this flag to preserve the original data. if not set and newer
            data is found the existing data will be overwritten
       cdf_version: str
            Specify a specific CDF version # to load (e.g., cdf_version='4.3.0')
       min_version: str
            Specify a minimum CDF version # to load
           Only grab the latest CDF version in the requested time interval
           Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time interval
           If True, don't remove flagged data (flagged data are set to NaNs by default, this keyword turns this off)
       List of tplot variables created.
```

Getting Started

Loading and Plotting Data Analysis Tools

Getting Started

Note on trange

The **trange** keyword accepts a wide range of different formats:

```
trange=['2015-10-16', '2015-10-17']

trange=['2015-10-16/14:00', '2015-10-16/15:00']

trange=['2015-10-16/14:30:45.553321', '2015-10-16/14:30:46.224322']

trange=['0ctober 16, 2015', '0ctober 17, 2015']

trange=['0ct 16, 2015', '0ct 17, 2015']

trange=['0ctober 16, 2015 at 4:00AM', '0ctober 16, 2015 at 5:00AM']

from datetime import datetime as dt
trange = [dt(year=2015, month=10, day=16), dt(year=2015, month=10, day=17)]
```

Python
Getting Started

Loading and Plotting Data

Analysis Tools

Loading and Plotting Data

Simple Example

```
from pyspedas.mms import fgm
from pytplot import tplot_names, get_data, store_data

# load the MMS1 FGM data for October 16, 2015
fgm_vars = fgm(probe=1, data_rate='srvy', trange=['2015-10-16', '2015-10-17'])

# list the tplot variables loaded
tvars = tplot_names()

# get the data out of a tplot variable
times, bgsm = get_data('mms1_fgm_b_gsm_srvy_l2')

# store the data into a different tplot variable
store_data('new_var_with_b_gsm', data={'x': times, 'y': bgsm})
```

What's New / Plug-in Status
IDL
Getting Started
Loading and Plotting Data
Analysis Tools
Python
Getting Started
Loading and Plotting Data

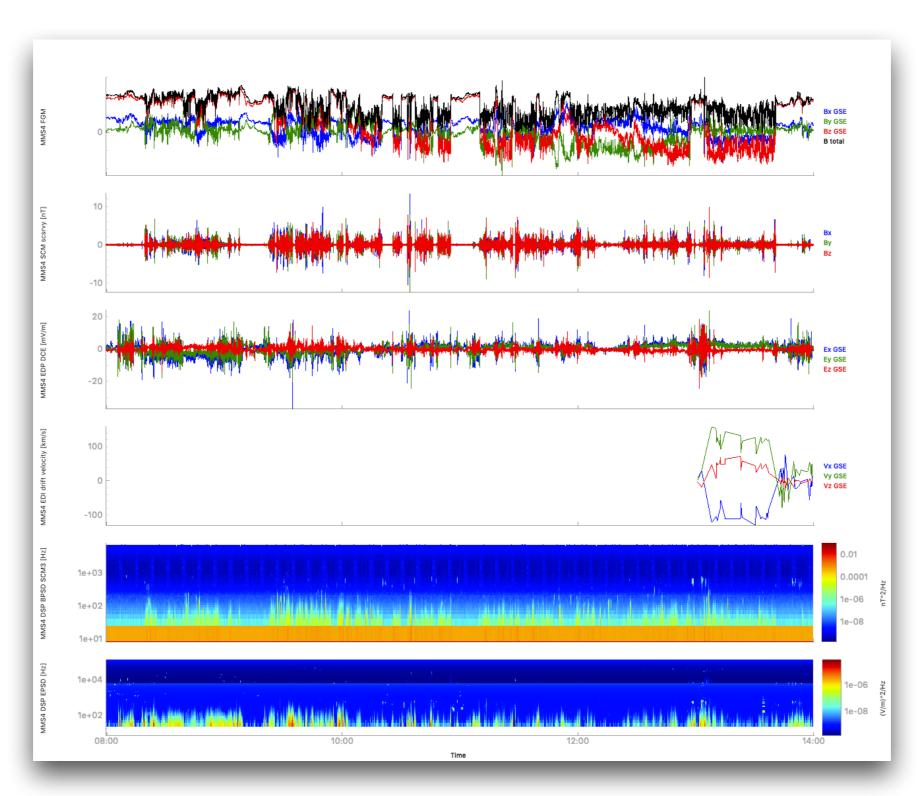
Analysis Tools

Loading and Plotting Data

FIELDS

What's New / Plug-in Status IDL
Getting Started

Getting Started
Loading and Plotting Data
Analysis Tools
Python


Getting Started

Loading and Plotting Data

Analysis Tools

Loading and Plotting Data

FIELDS

What's New / Plug-in Status
IDL
Getting Started
Loading and Plotting Data
Analysis Tools
Python
Getting Started
Loading and Plotting Data

Analysis Tools

Loading and Plotting Data

Ions

```
from pyspedas.mms import fpi, hpca, eis
eis(datatype=['extof', 'phxtof'], probe=4, trange=trange, time_clip=True)
fpi(center_measurement=True, datatype='dis-moms', probe=4, trange=trange, time_clip=True)
hpca(center_measurement=True, datatype='ion', probe=4, trange=trange, time_clip=True)

from pyspedas import mms_hpca_calc_anodes, mms_hpca_spin_sum

mms_hpca_calc_anodes(fov=[0, 360])
mms_hpca_spin_sum(probe='4', avg=True)

tplot(['mms4_epd_eis_extof_proton_flux_omni',
    'mms4_epd_eis_phxtof_proton_flux_omni',
    'mms4_epd_eis_phxtof_proton_flux_omni',
    'mms4_dis_energyspectr_omni_fast',
    'mms4_dis_bulky_gse_fast',
    'mms4_dis_numberdensity_fast'])
```

Getting Started Loading and Plotting Data **Analysis Tools** Python

Getting Started

Loading and Plotting Data

Analysis Tools

Loading and Plotting Data

Ions

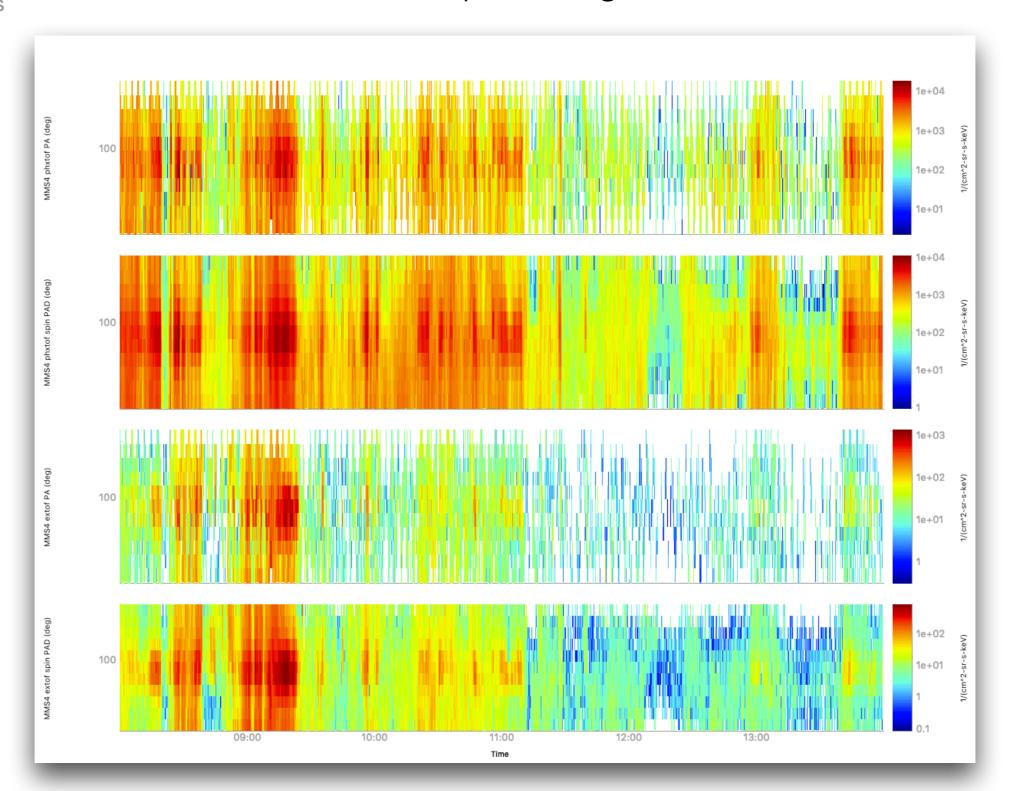
Getting Started
Loading and Plotting Data
Analysis Tools
Python
Getting Started

Loading and Plotting Data

Analysis Tools

Loading and Plotting Data

Ion pitch angle distributions


Getting Started
Loading and Plotting Data
Analysis Tools
Python

Getting Started Loading and Plotting Data

Analysis Tools

Loading and Plotting Data

Ion pitch angle distributions

What's New / Plug-in Status
IDL
Getting Started
Loading and Plotting Data
Analysis Tools
Python
Getting Started
Loading and Plotting Data

Analysis Tools

Loading and Plotting Data

Electrons

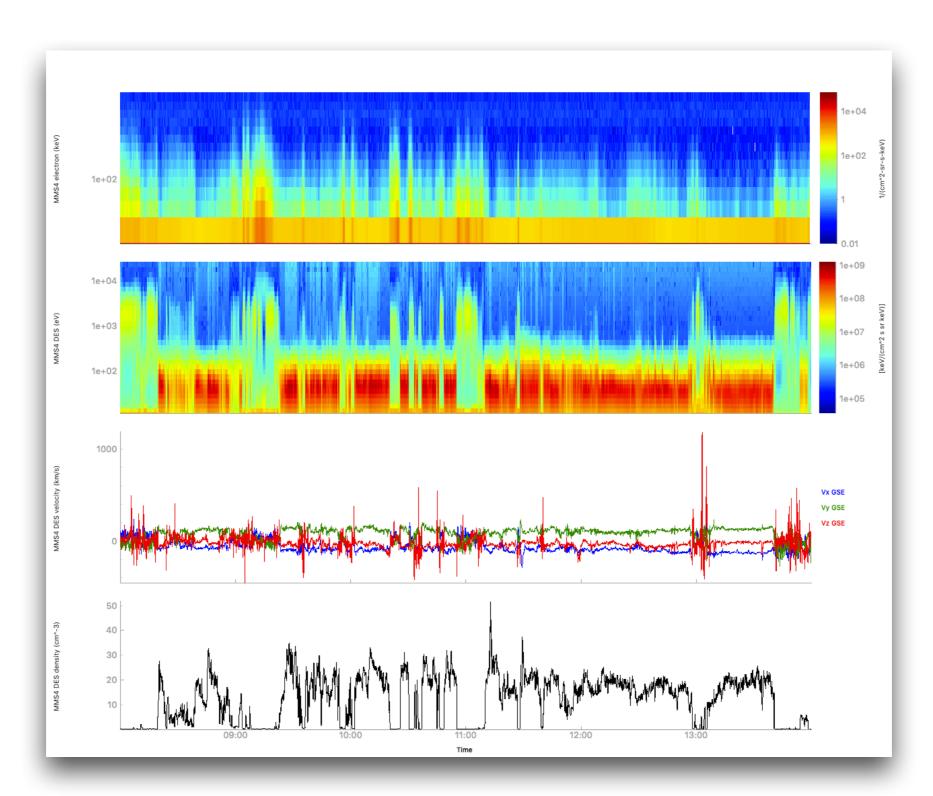
```
from pyspedas.mms import fpi, feeps

trange = ['2015-10-16/8:00', '2015-10-16/14:00']

fpi(datatype='des-moms', probe=4, trange=trange, time_clip=True, center_measurement=True)
feeps(datatype='electron', probe=4, trange=trange, time_clip=True)

tplot(['mms4_epd_feeps_srvy_l2_electron_intensity_omni_spin',
    'mms4_des_energyspectr_omni_fast',
    'mms4_des_bulkv_gse_fast',
    'mms4_des_numberdensity_fast'])
```

Getting Started
Loading and Plotting Data
Analysis Tools
Python


Getting Started

Loading and Plotting Data

Analysis Tools

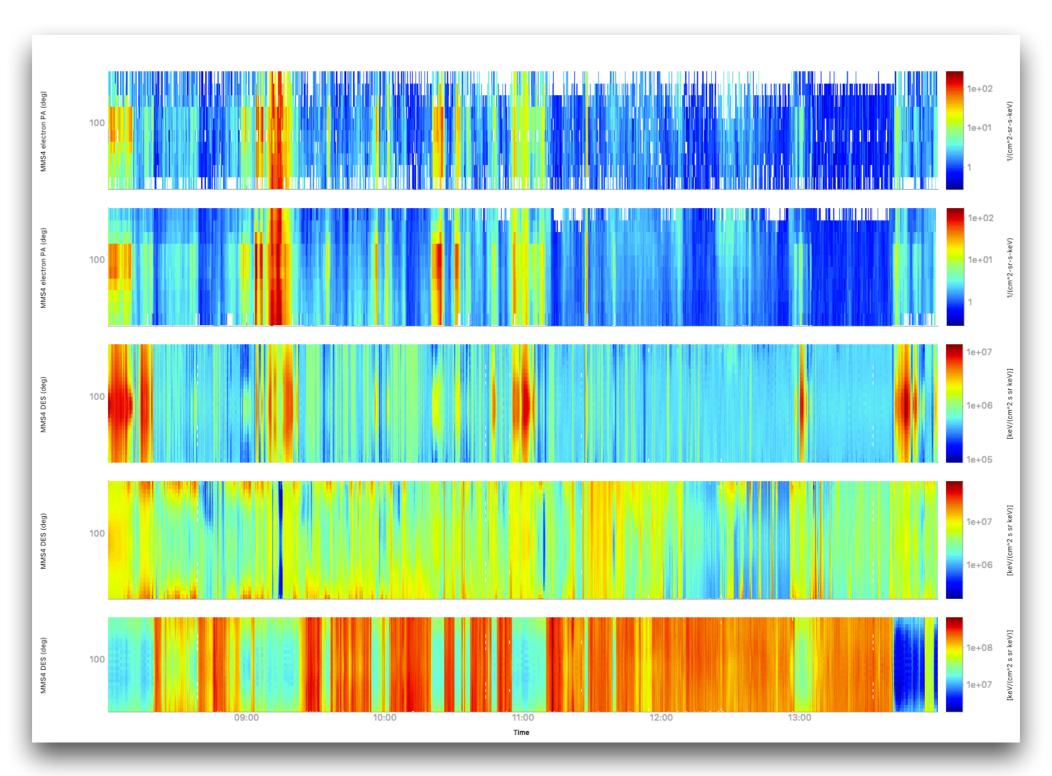
Loading and Plotting Data

Electrons

Analysis Tools

Loading and Plotting Data

Loading and Plotting Data


Electron pitch angle distributions

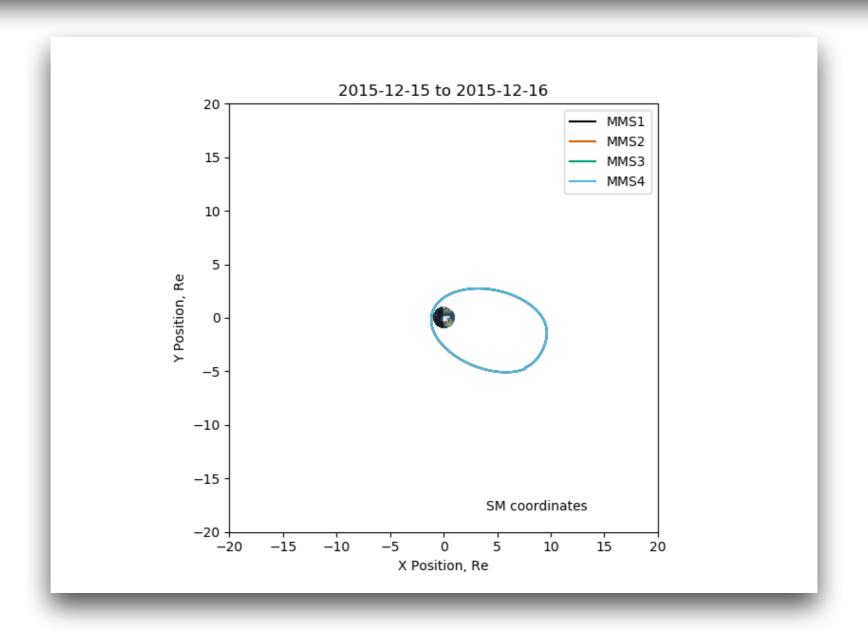
Getting Started Loading and Plotting Data

Analysis Tools

Loading and Plotting Data

Electron pitch angle distributions

Loading and Plotting Data


Plotting Orbits

```
Getting Started

Loading and Plotting Data
```

Analysis Tools

```
from pyspedas.mms.mms_orbit_plot import mms_orbit_plot
mms_orbit_plot(coord='sm', probes=[1, 2, 3, 4], trange=['2015-12-15', '2015-12-16'], xr=[-20, 20], yr=[-20, 20])
```


What's New / Plug-in Status IDL
Getting Started
Loading and Plotting Data
Analysis Tools
Python
Getting Started
Loading and Plotting Data
Analysis Tools

Analysis Tools

pyspedas.mms.curlometer

Curlometer technique

tdpwrspc

SCM dynamic power spectra

What's New / Plug-in Status IDL
Getting Started
Loading and Plotting Data
Analysis Tools
Python
Getting Started
Loading and Plotting Data

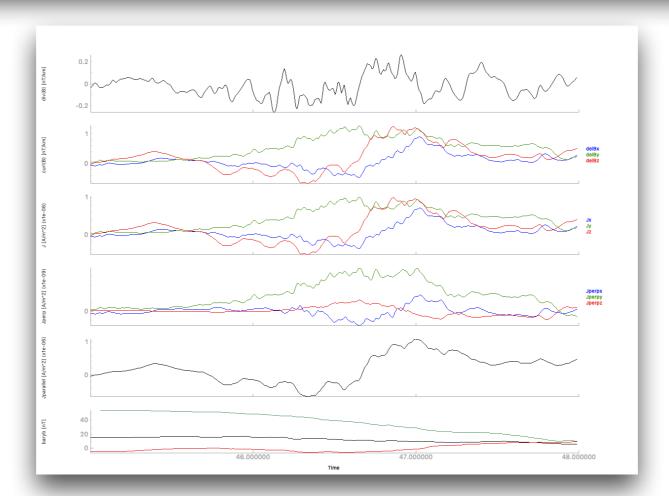
Analysis Tools

Curlometer technique

Analysis Tools

```
from pyspedas.mms import fgm, curlometer

trange = ['2015-10-30/05:15:45', '2015-10-30/05:15:48']

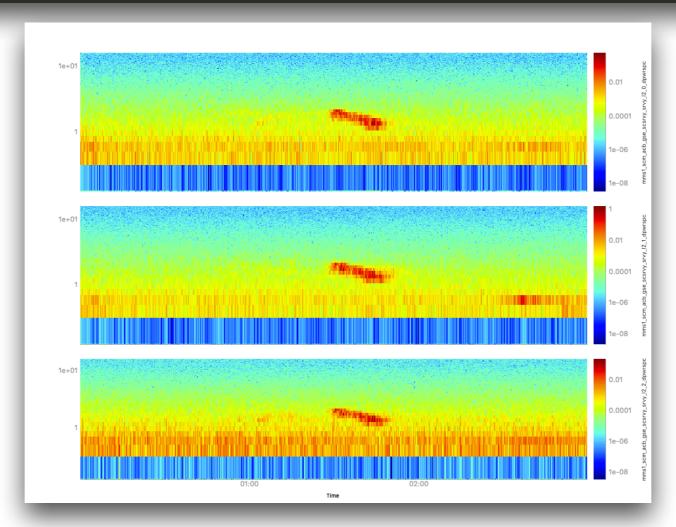

fgm_vars = fgm(trange=trange, probe=[1, 2, 3, 4], data_rate='brst', time_clip=True)

fields = ['mms1_fgm_b_gse_brst_l2', 'mms2_fgm_b_gse_brst_l2', 'mms3_fgm_b_gse_brst_l2', 'mms4_fgm_b_gse_brst_l2']

positions = ['mms1_fgm_r_gse_brst_l2', 'mms2_fgm_r_gse_brst_l2', 'mms3_fgm_r_gse_brst_l2', 'mms4_fgm_r_gse_brst_l2']

curl_vars = curlometer(fields=fields, positions=positions)

tplot(['divB','curlB','jtotal','jperp','jpar','baryb'])
```



What's New / Plug-in Status IDL
Getting Started
Loading and Plotting Data
Analysis Tools
Python
Getting Started
Loading and Plotting Data

Analysis Tools

SCM dynamic power spectra

Analysis Tools

What's New / Plug-in Status
IDL
Getting Started
Loading and Plotting Data
Analysis Tools
Python
Getting Started
Loading and Plotting Data
Analysis Tools

Analysis Tools

More Examples

https://github.com/spedas/mms-examples

Backup slides

Getting Started
Loading and Plotting Data
Analysis Tools
Python
Getting Started

Loading and Plotting Data

Analysis Tools

Loading and Plotting Data

Find available files

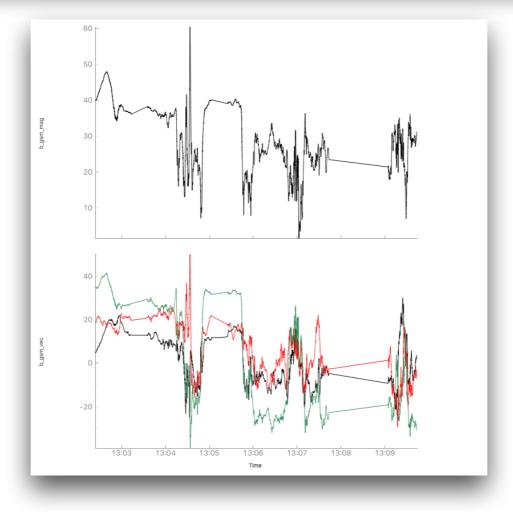
```
tr = ['2015-10-16/13:00', '2015-10-16/13:10']
files = mms_load_fpi(probe='4', data_rate='brst', datatype='dis-moms', trange=tr, available=True)
```

Loading and Plotting Data

Analysis Tools

Loading and Plotting Data

Create pyTplot Variables


```
mms_load_fgm(probe='1', data_rate='brst', trange=tr, time_clip=True)

times, data = get_data('mms1_fgm_b_gsm_brst_l2')

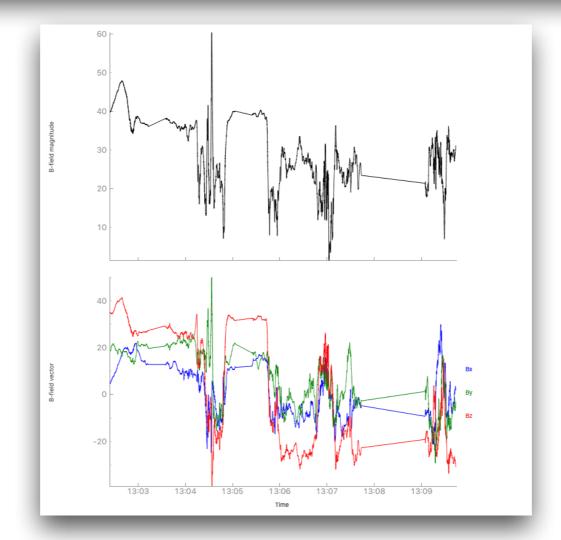
store_data('b_gsm_vec', data={'x': times, 'y': data[:, 0:3]})

store_data('b_gsm_mag', data={'x': times, 'y': data[:, 3]})

tplot(['b_gsm_mag', 'b_gsm_vec'])
```


Loading and Plotting Data

Analysis Tools


Loading and Plotting Data

Modify Variable Metadata

```
from pytplot import options

options('b_gsm_mag', 'ytitle', 'B-field magnitude')
options('b_gsm_vec', 'ytitle', 'B-field vector')
options('b_gsm_vec', 'color', ['b', 'g', 'r'])
options('b_gsm_vec', 'legend_names', ['Bx', 'By', 'Bz'])

tplot(['b_gsm_mag', 'b_gsm_vec'])
```


Getting Started
Loading and Plotting Data
Analysis Tools
Python

Getting Started

Loading and Plotting Data

Analysis Tools

Loading and Plotting Data

Modify Variable Metadata

```
Help on function options in module pytplot.options:
options(name, option, value)
   This function allows the user to set a large variety of options for individual plots.
       name: str
           Name of the tplot variable
            The name of the option. See section below
        value : str/int/float/list
           The value of the option. See section below.
   Options:
                                        Red, Orange, Yellow, Green, Blue, etc.
       Colormap
                                        https://matplotlib.org/examples/color/colormaps_reference.html.
       Spec
                                        1 sets the Tplot Variable to spectrogram mode, 0 reverts.
       Alt
                           int
                                        1 sets the Tplot Variable to altitude plot mode, 0 reverts.
       Map
                           int
                                        1 sets the Tplot Variable to latitude/longitude mode, 0 reverts.
        link
                           list
                                        Allows a user to reference one tplot variable to another.
        ylog
                           int
                                        1 sets the y axis to log scale, 0 reverts.
       zlog
                            int
                                        1 sets the z axis to log scale, 0 reverts (spectrograms only).
        legend_names
                                        A list of strings that will be used to identify the lines.
        xlog_interactive
                           bool
                                         Sets x axis on interactive plot to log scale if True.
                                         Set y axis on main plot window to log scale if True.
        ylog_interactive
                           bool
                                         Sets y axis on interactive plot to log scale if True.
                                         Sets z axis on main plot window to log scale if True.
                           bool
        zlog
        line_style
                           str
                                         scatter (to make scatter plots), or solid_line, dot, dash_dot, dash_dot_dot_dot_long_dash.
        char_size
                           int
                                        Defines character size for plot labels, etc.
       name
                           str
                                        The title of the plot.
                                        Number between (0,1], representing the percent size of the plot.
       panel_size
                                        Full path and name of a background image for "Map" plots.
                           flt
                                        Number between [0,1], gives the transparancy of the plot lines.
                           flt
       thick
                                        Sets plot line width.
                           flt list
                                        Two numbers that give the y axis range of the plot.
                           flt list
                                        Two numbers that give the z axis range of the plot.
       xrange_interactive flt list
                                        Two numberes that give the x axis range of interactive plots.
       yrange_interactive flt list
                                        Two numberes that give the y axis range of interactive plots.
       ytitle
                           str
                                        Title shown on the y axis.
                                         Title shown on the z axis. Spec plots only.
       plotter
                                        Allows a user to implement their own plotting script in place of the ones
                                        Title for x-axis crosshair.
       crosshair_x
       crosshair_y
                           str
                                        Title for y-axis crosshair.
       crosshair_z
                                        Title for z-axis crosshair.
                           str
       static
                                        Datetime string that gives desired time to plot y and z values from a spec
                           str
       static_tavg
                                        Datetime string that gives desired time-averaged y and z values to plot
                                         from a spec plot.
                                         Seconds around which the cursor is averaged when hovering over spectrogram
       t_average
   Returns:
       None
```

Loading and Plotting Data

Analysis Tools

Getting Started

Loading and Plotting Data

Return the data without creating pyTplot variables

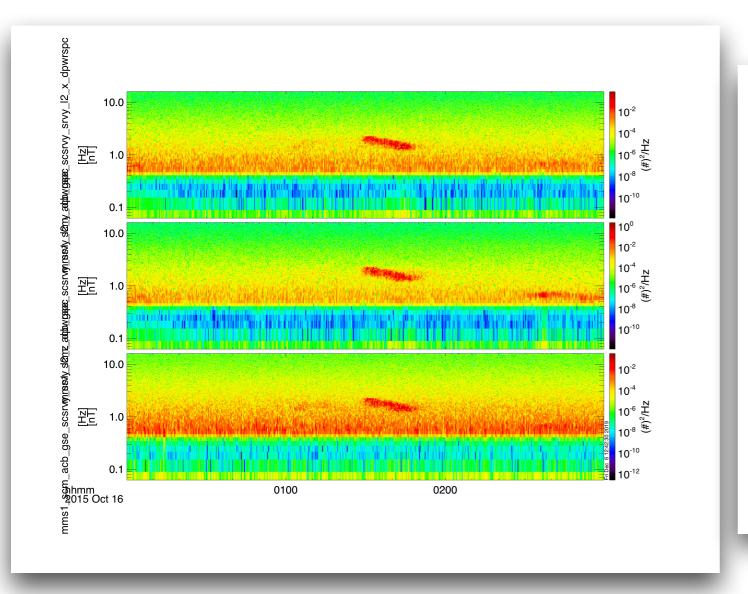
```
tr = ['2015-10-16/13:00', '2015-10-16/13:10']
data = mms_load_fpi(probe='4', data_rate='brst', datatype='dis-moms', trange=tr, notplot=True)
```

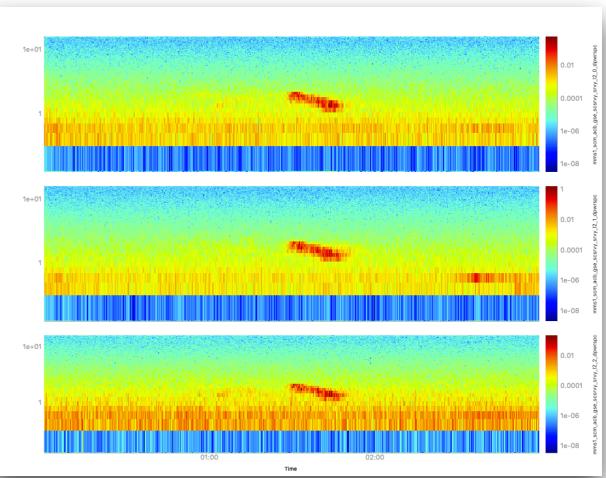
```
25-Jun-19 14:26:14: Loading pydata/mms4/fpi/brst/l2/dis-moms/2015/10/16/mms4_fpi_brst_l2_dis-moms_20151016125604_v3.3.0.cdf
25-Jun-19 14:26:14: Loading pydata/mms4/fpi/brst/l2/dis-moms/2015/10/16/mms4 fpi brst l2 dis-moms 20151016130224 v3.3.0.cdf
25-Jun-19 14:26:14: Loading pydata/mms4/fpi/brst/l2/dis-moms/2015/10/16/mms4_fpi_brst_l2_dis-moms_20151016130334_v3.3.0.cdf
25-Jun-19 14:26:14: Loading pydata/mms4/fpi/brst/l2/dis-moms/2015/10/16/mms4_fpi_brst_l2_dis-moms_20151016130524_v3.3.0.cdf
25-Jun-19 14:26:14: Loading pydata/mms4/fpi/brst/l2/dis-moms/2015/10/16/mms4_fpi_brst_l2_dis-moms_20151016130904_v3.3.0.cdf
>>>
>>> data.keys()
dict_keys(['mms4_dis_errorflags_brst', 'mms4_dis_compressionloss_brst', 'mms4_dis_startdelphi_count_brst', 'mms4_dis_startdelphi_angle_brst', 'mms4_dis_sector_despinp_brs
t', 'mms4_dis_energyspectr_px_brst', 'mms4_dis_energyspectr_mx_brst', 'mms4_dis_energyspectr_py_brst', 'mms4_dis_energyspectr_my_brst', 'mms4_dis_energyspectr_pz_brst',
ensityextrapolation_low_brst', 'mms4_dis_densityextrapolation_high_brst', 'mms4_dis_bulkv_dbcs_brst', 'mms4_dis_bulkv_spintone_dbcs_brst', 'mms4_dis_bulkv_gse_brst', 'mms4_dis_bulkv_spintone_dbcs_brst', 'mms4_dis_bulkv_gse_brst', 'mms4_dis_bulkv_spintone_dbcs_brst', 'mms4_dis_bulkv_gse_brst', 'mms4_dis_bulkv_spintone_dbcs_brst', 'mms4_dis_bulkv_gse_brst', 'mms4_dis_bulkv_spintone_dbcs_brst', 'mms4_dis_bulkv_gse_brst', 'mms4_dis_bulkv_gse_brst', 'mms4_dis_bulkv_spintone_dbcs_brst', 'mms4_dis_bulkv_gse_brst', 'mms4_dis_brst', 'mms
4_dis_bulkv_spintone_gse_brst', 'mms4_dis_prestensor_dbcs_brst', 'mms4_dis_prestensor_gse_brst', 'mms4_dis_pres_bg_brst', 'mms4_dis_temptensor_dbcs_brst', 'mms4_dis_
ensor gse_brst', 'mms4_dis_heatq_dbcs_brst', 'mms4_dis_heatq_gse_brst', 'mms4_dis_temppara_brst', 'mms4_dis_tempperp_brst'])
|->> data['mms4_dis_energyspectr_omni_brst'].keys()
dict_keys(['x', 'y', 'v'])
>>> data['mms4_dis_energyspectr_omni_brst']['x']
array([1.44500016e+09, 1.44500016e+09, 1.44500016e+09, ...,
                  1.44500098e+09, 1.44500098e+09, 1.44500098e+09])
>>>
>>> data['mms4_dis_energyspectr_omni_brst']['v']
array([[1.206000e+01, 1.549000e+01, 1.989000e+01, ..., 1.715373e+04,
                    2.203368e+04, 2.830189e+04],
                  [1.064000e+01, 1.366000e+01, 1.755000e+01, ..., 1.513542e+04,
                   1.944119e+04, 2.497188e+04],
                  [1.206000e+01, 1.549000e+01, 1.989000e+01, ..., 1.715373e+04,
                   2.203368e+04, 2.830189e+04],
                  [1.064000e+01, 1.366000e+01, 1.755000e+01, ..., 1.513542e+04,
                   1.944119e+04, 2.497188e+04],
                  [1.206000e+01, 1.549000e+01, 1.989000e+01, ..., 1.715373e+04,
                   2.203368e+04, 2.830189e+04],
                  [1.064000e+01, 1.366000e+01, 1.755000e+01, ..., 1.513542e+04,
                    1.944119e+04, 2.497188e+04]], dtype=float32)
```

Getting Started
Loading and Plotting Data
Analysis Tools
Python
Getting Started

Loading and Plotting Data

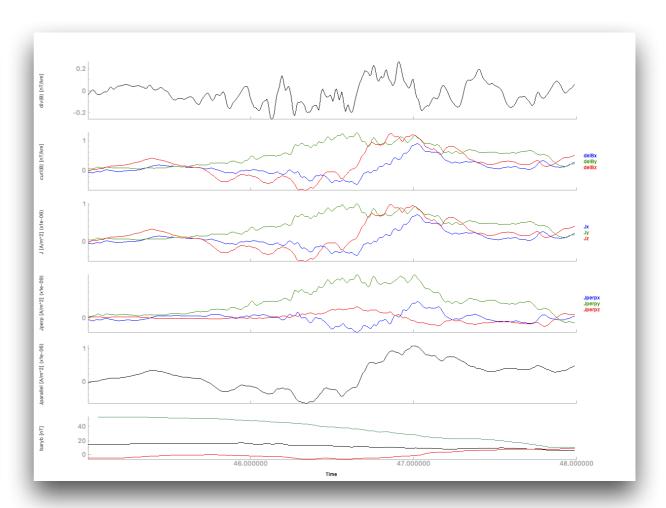
Analysis Tools

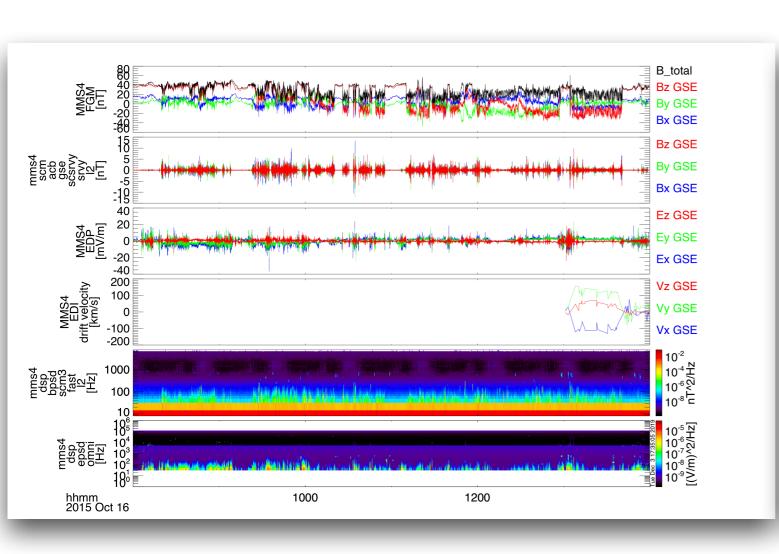

Loading and Plotting Data

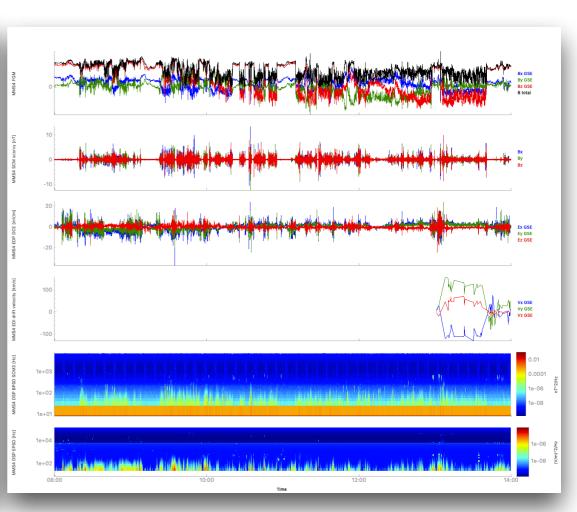

Time Conversions

```
from pyspedas import time_string, time_double
print(time_string(1445000544.86188))
print(time_double('2015-10-16 13:02:24.861880'))
```

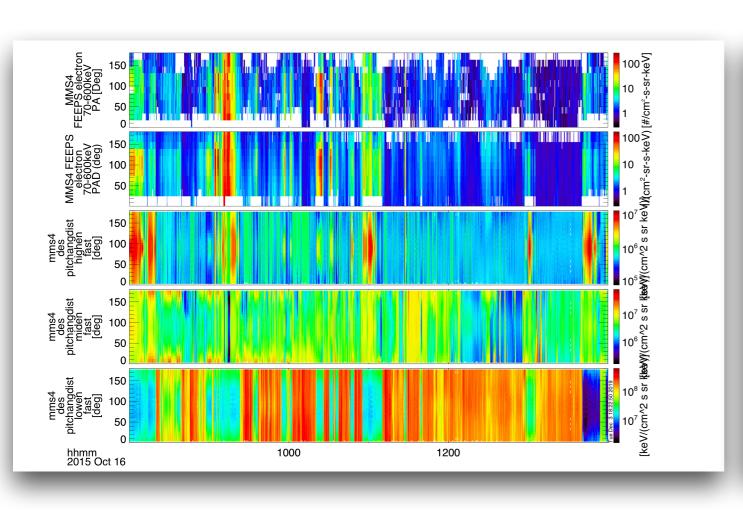
```
>>> times[0]
1445000544.86188
>>>
>>> from pyspedas import time_string, time_double
>>>
>>> print(time_string(1445000544.86188))
2015-10-16 13:02:24.861880
>>>
>>> print(time_double('2015-10-16 13:02:24.861880'))
1445000544.86188
```


IDL




IDL

| (a) | (b) | (c) | (c)




IDL

IDL Python

