
Getting Started with
PySPEDAS

Jim Lewis
jwl@ssl.Berkeley.edu

Tutorial agenda

• Motivation for developing and using PySPEDAS
• Setting up a Python environment
• Installing PySPEDAS
• Some PySPEDAS core concepts
• Some simple PySPEDAS examples
• Q & A
• Time permitting: live demo

PySPEDAS features and capabilities
• Load data from many different providers and formats into a common environment

• Support for directly loading data from 30+ missions (including THEMIS, MMS, ERG/Arase,
RBSP/Van Allen probes, Parker Solar Probe, FAST, WIND, many others)

• Load via CDAWeb web service
• Load via HAPI

• Analysis and Modeling tools
• Interface to native Python geopack package
• Field-aligned coordinates, minimum variance analysis, wave polarization, etc

• Plotting tools
• Line plots
• Spectrograms
• Being worked on: interactive plots (zoom in on specific time ranges, see time/data values at

cursor, etc)
• Also coming soon: 3-D particle distribution interactive visualization tools (courtesy of

ERG/Arase team, similar to IDL ISEE-3D tool)

Future development plans

• More missions and datasets
• Improved modeling tools (e.g. additional GEOPACK models, field

line tracing)
• More interactivity with plots (e.g. mousing over to get times and data

values)
• More wrappers for working with particle datasets for additional

missions (e.g. THEMIS)

How to get help

• Documentation wiki: http://spedas.org/wiki
• Also: https://pyspedas.readthedocs.io
• Github issue tracker: https://github.com/spedas/pyspedas/issues
• Email questions and problem reports:

Themis_Science_Support@ssl.Berkeley.edu

http://spedas.org/wiki
https://github.com/spedas/pyspedas/issues

Getting Python

• Python 3.8 or later is required (current version is 3.11.4)
• Some packages that PySPEDAS depends on may not be compatible or well-tested

with 3.11; 3.10 might be a safer choice

• python.org is a great place to start: downloads & installation instructions,
documentation, beginner’s guide
• Another option (even if you already have a suitable Python installation!) is

Anaconda (anaconda.com), which bundles the Python interpreter with
additional scientific Python packages and other tools (including interactive
development environments: highly recommended!)
• It is fine to have multiple Python versions installed on the same system.

Python IDEs (interactive development
environments
• An IDE is not strictly needed – you could get by with just a text editor

and a command line. But you’ll probably want one.
• Hover or click on function names to see documentation, parameter hints, etc
• Jump from a function call point to the function definition
• Integration with version control systems (git, svn, etc)
• See potential problems while coding
• Run scripts and tests easily and see results without leaving the IDE
• Debugging: set breakpoints, step through code and inspect variable values

• The Spyder IDE is bundled with Anaconda (anaconda.org); PyCharm
(www.jetbrains.com/pycharm) and Visual Studio Code
(code.visualstudio.com) are some other popular free IDEs.

http://www.jetbrains.com/pycharm

Python virtual environments and package
management
• Unlike IDL, the Python ecosystem is heavily dependent on open-

source packages to provide functionality beyond the core language.
• numpy for numerical algorithms, PyQt or matplotlib for graphics, CDF and

NetCDF libraries, etc.
• It is typical for a Python package (like PySPEDAS) to depend on several other

packages, sometimes with specific versioning requirements.
• The more packages installed in a single environment, the greater the potential

for versioning conflicts

• Python provides for “virtual environments”, which allow different
environments for different purposes to coexist on the same system,
rather than installing all packages under the main Python installation.

Python virtual environments and package
management
• We highly recommend installing PySPEDAS in a dedicated virtual

environment.
• Anaconda virtual environments can be managed via Anaconda Navigator, or

using the command line: conda create --name my_new_environment
• Your IDE may offer the option to create a virtual environment when creating a

new project.
• Python can create a new virtual environment for you, with the command line:
python -m venv /path/to/new/virtual/environment

Python virtual environments and package
management
• There are two styles of package management commonly used in the

Python community:
• conda (if using an Anaconda python distribution): conda install package-name
• pip (Pip Installs Packages): pip install package-name
• Each system has its own repository of Python packages and ways of tracking

locally installed packages. (So conda is not aware of packages installed via pip,
and vice versa).
• Many packages are available via both methods, but PySPEDAS is only available

via pip (for now).

How to get PySPEDAS

• Installing for the first time: pip install pyspedas
• Upgrading an existing installation:
pip install --upgrade pyspedas

• This installs (or updates) the latest released version of the PySPEDAS
source code, along with all the other packages it depends on.
• Another method (for example, if you’re interested in modifying or

contributing to PySPEDAS) is to get the source code directly from our
GitHub repository. Your IDE might be able to create a project directly
from Github, or you can use the command:

 git clone https://github.com/spedas/pyspedas.git /path/to/pyspedas

https://github.com/spedas/pyspedas.git/path/to/pyspedas

PySPEDAS Concepts

• Load routines: Download data from mission-specific or multi-mission archives (e.g. THEMIS,
MMS, SPDF), maintain local cache of downloaded data files, convert CDF or NetCDF data to tplot
variables.

• Tplot variables: Basic data structure on which SPEDAS and PySPEDAS are built. Maps strings (tplot
variable names) to time series data arrays and metadata

• Metadata: Information that describes important data attributes needed by plotting and analysis
tools (e.g. units, coordinate systems, plot labels, energy channel values for spectra, etc.)

• Plotting tools: “tplot” routine for creating line plots or spectrograms of tplot variables, helper
routines for setting per-variable or per-plot options. Based on matplotlib package.

• Analysis tools: Manipulate tplot variables in various ways. PySPEDAS includes many tools for
performing arithmetic operations, interpolation, and coordinate transformations. Also includes
more complicated tasks such as generation of plasma moments from 3-D particle distributions, or
wave polarization analysis. Many tools are implemented using the numpy library.

Using Load Routines

• Use python ‘import’ statements to make load routines available in your program. “import
pyspedas” makes all the supported mission namespaces available. Many missions follow a
naming convention like pyspedas.MISSION.INSTRUMENT() to access their load routines.

• Commonly supported load routine parameters:
• trange : Specify a time range for data to be loaded (array of start and end times, represented as string-valued

timestamps or double precision Unix times)
• probe: For missions that support multiple probes, specify one or more probes to load data for
• level: Missions typically publish data at various calibration levels, e.g. level=‘l1’ (for raw, uncalibrated data), level=‘l2’

(calibrated data in engineering units and geophysical coordinates), to l3 and above (highly processed/key parameter
data)

• datatype: Specify a subset of available variables in the requested dataset to be loaded
• get_support_data: A flag (True/False) commonly used to request loading ancillary data that may be needed for

downstream analysis tools

Example 1: Load and plot THEMIS FGM data

Example 1, PySPEDAS plot output

Working with tplot variables

• The pytplot package contains several routines for listing, creating, or extracting information from
tplot variables. To use specific routines, import them from pytplot, e.g:

 from pytplot import get_data, store_data, tplot_names
• tplot_names(pattern) prints tplot names currently loaded and matching the given wildcard

pattern
• Many missions follow a naming convention like PROBE_MISSION_INSTRUMENT_DATATYPE for

their variable names. There may also be suffixes to indicate data levels, units, or coordinate
systems

• get_data(‘tplot_variable_name’) is used to retrieve the timestamps, data values, or metadata for
a given variable as normal Python data structures.

Example 1A, tplot variables

Example 1A, console output

Example 1A, getting tplot variable metadata

Example 1A, metadata console output

Example 2, MMS FGM data

Example 2, PySPEDAS plot output

Example 3, MMS FEEPS data and spectrogram

Example 3, PySPEDAS spectrogram plot

Analysis tools: coordinate transformations

Example 4: Coordinate transforms

Example 4: console output

Example 4: PySPEDAS plots

Other analysis tools

• Wavelet transforms
• Wave polarization analysis
• 2-D slices of 3-D particle distributions

Jupyter notebooks

• For PySPEDAS, we mainly use Jupyter notebooks for tutorial
examples.
• Jupyter notebooks run in an interactive Python process, with code

and results displayed in a browser window.
• Each code fragment lives in its own “cell” (but they all run in a

common environment).
• There are also annotation cells, which can contain rich content –

embedded images, styled text, live web links, etc. So they are much
more versatile than inline code comments.

Running Jupyter notebooks

• You will probably need to install the jupyter package in the virtual environment you’re using: “pip
install jupyter”

• The command “jupyter notebook” will open a page in your browser. From there, you should be
able to navigate to the notebook you’re interested in, open it and start running.

• Another option, which doesn’t require a Python installation at all, is to use “Google Colab”. A
notebook can be uploaded to a Google Drive page (with a few extra commands in the notebook
to install the required packages). Opening the notebook will spin up a Python session in the cloud
and let you run the notebook there, and display the results in your browser.

Jupyter notebook

Additional PySPEDAS example notebooks

• On Github, we have several repositories containing quite a few
Jupyter notebooks:
• PyTplot and other tools: https://github.com/spedas/pyspedas-examples
• MMS examples: https://github.com/spedas/mms-examples
• THEMIS examples: https://github.com/spedas/themis-examples

• You can navigate to individual notebooks in the Github pages and
download them – you don’t need to use Git or install the whole
repository.

https://github.com/spedas/pyspedas-examples
https://github.com/spedas/mms-examples
https://github.com/spedas/themis-examples

How to get help

• Documentation wiki: http://spedas.org/wiki
• Also: https://pyspedas.readthedocs.io
• Github issue tracker: https://github.com/spedas/pyspedas/issues
• Email questions and problem reports:

Themis_Science_Support@ssl.Berkeley.edu

http://spedas.org/wiki
https://github.com/spedas/pyspedas/issues

Q & A, live demo(?)

