
SPEDAS Particle Tools
Development Guide

A guide for developers on velocity distribution function tools in SPEDAS

version 1.1

Eric Grimes

(based on the work of many previous developers/scientists)

egrimes@igpp.ucla.edu

mailto:egrimes@igpp.ucla.edu

Overview

• PGS

• 2D Slices

• ISEE 3D

PGS
Particle Get Spec

PGS plug-ins allow users to generate energy/gyro-phase spectra,
PADs, and moments from velocity distribution functions

Routine Purpose

xxx_part_products Core routine

xxx_part_getspec Wrapper for xxx_part_products; loads distribution and support data
into tplot variables

xxx_get_yyy_dist Converts distribution tplot variables into 3D particle structures

xxx_convert_flux_units Converts distribution (df_cm, df_km) units to/from flux, eflux units

xxx_pgs_clean_data Reforms items in structure to [energy, angle], strips unneeded items
from structure

xxx_pgs_clean_support
Transforms magnetic field to same coordinate system as the

distribution, and interpolates B-field, S/C potential, S/C position to
the time stamps of the distribution

xxx_pgs_make_fac Generates the field aligned coordinate transformation matrix

PGS Plug-in Overview

xxx_part_getspec: wrapper routine; loads distribution and support data
required by xxx_part_products based on the user’s keywords, then calls
xxx_part_products

xxx_part_products: core routine

suggestion: start with xxx_part_products and a short crib sheet that works
with xxx_part_products to get it to work - then turn that crib sheet into

xxx_part_getspec

xxx_get_yyy_dist: instrument-specific function that returns SPEDAS 3D
distribution data structures for calculations

xxx: mission (e.g., thm, mms, erg, etc)
yyy: instrument (e.g., FPI, HPCA, ESA, etc)

calls

calls

Key mission specific routines

xxx_part_getspec
xxx_part_getspec, trange=['2015-12-15', '2015-12-16'], instrument='yyy', species='i'

1) Load ion distribution data for YYY instrument

2) (not needed to start) Load B-field, S/C position, S/C potential, YYY velocity data
(all depending on if they’re needed in xxx_part_products); B-field, S/C position
and YYY velocity data will be required for various FAC transformations; S/C
potential data are required for moments

3) Pass required tplot variables and options to xxx_part_products

(or a short crib sheet to start off with)

1) Validate input

2) Find timestamps for the requested trange (with xxx_get_yyy_dist); this is so
that you can interpolate the support data to the same times as the
distribution data

3) Prepare the support data

4) Loop over time to build the spectrograms/moments

5) Create the tplot variables

Before expanding on these, we should introduce the function that turns your
distribution data (stored in tplot variables) into the standard 3D data
structure used by SPEDAS particle routines: xxx_get_yyy_dist

xxx_part_products

xxx_get_yyy_dist
dist = xxx_get_yyy_dist(tname [,index] [,/times] [,/structure])

tname: Tplot variable containing the distribution data
index: Index of time sample to return
times: Flag to return full array of times
structure: Flag to return a structure array instead of a pointer

Input:

By default: pointer to structure containing 3D distribution data and metadata
(more on this next)

If /structure keyword is specified: the above structure itself without a pointer
(less efficient)

If /times keyword is specified: array of time samples (the X values from tname) -
for (2) on previous slide

Output (returns):

note: if ‘index’ parameter isn’t specified, all distribution data should be returned (this
will allow the routine to be used with our spd_slice2d tools as well)

3D Data Structure for Particle Routines

 PROJECT_NAME STRING 'MMS'
 SPACECRAFT STRING '1'
 DATA_NAME STRING 'FPI Electron'
 UNITS_NAME STRING 'df_cm'
 UNITS_PROCEDURE STRING ''
 SPECIES STRING 'e'
 VALID BYTE 1
 CHARGE FLOAT -1.00000
 MASS FLOAT 5.68566e-06
 TIME DOUBLE 1.4501376e+09
 END_TIME DOUBLE 1.4501376e+09
 DATA FLOAT Array[32, 32, 16]
 BINS FLOAT Array[32, 32, 16]
 ENERGY FLOAT Array[32, 32, 16]
 DENERGY FLOAT Array[32, 32, 16]
 NENERGY LONG 32
 NBINS LONG 512
 PHI FLOAT Array[32, 32, 16]
 DPHI FLOAT Array[32, 32, 16]
 THETA FLOAT Array[32, 32, 16]
 DTHETA FLOAT Array[32, 32, 16]

Example from FAST FPI L2 (all probably required):

[32, 32, 16] is:
[energy, azimuth, elevation]

only placeholder required

per energy, azimuth*elevation

bins are 0 (not valid)
or 1 (valid)

See mms_get_fpi_dist.pro for full example of FPI on MMS

eV/(km/s)^2

only placeholder required

3D Data Structure for Particle Routines
Important Note!

SPEDAS uses presumed particle trajectories; if angles are stored in
look direction of instrument, they’ll need to be converted, e.g.,

dist.phi = (dist.phi + 180) mod 360
dist.theta = -dist.theta

1) Validate input

2) Find timestamps for the requested trange (with xxx_get_yyy_dist); this is so
that you can interpolate the support data to the same times as the
distribution data

3) Prepare the support data

4) Loop over time to build the spectrograms/moments

5) Create the tplot variables

xxx_part_products

Prepare Support Data

1) Generate the field aligned coordinate transformation matrix

2) Transform and interpolate magnetic field data

3) Interpolate spacecraft potential data

4) Prepare additional support data (e.g., photoelectron correction models, …)

See mms_pgs_make_fac.pro/mms_pgs_clean_support.pro for MMS examples

1) Validate input

2) Find timestamps for the requested trange (with xxx_get_yyy_dist); this is so
that you can interpolate the support data to the same times as the
distribution data

3) Prepare the support data

4) Loop over time to build the spectrograms/moments

5) Create the tplot variables

xxx_part_products

Loop over time to build the spectrograms/moments

1) Return the structure for each time index, e.g.,

2) Convert units (typically defaults to output in eflux); see: mms_convert_flux_units

3) Reform items in dist from [energy, theta, phi] to [energy, angle], then remove unneeded fields
from structure; see: mms_pgs_clean_data; return new structure, e.g., clean_dist

4) Apply phi, theta, and energy limits (spd_pgs_limit_range)

5) Calculate moments (spd_pgs_moments)

6) Build theta spectrogram (spd_pgs_make_theta_spec)

7) Build phi spectrogram (spd_pgs_make_phi_spec)

8) Build energy spectrogram (spd_pgs_make_e_spec)

9) Perform transformation to FAC, regrid data, and apply limits in new coords (spd_pgs_do_fac,
spd_pgs_regrid, spd_pgs_limit_range)

10) Build pitch angle spectrogram (spd_pgs_make_theta_spec)

11) Build gyrophase spectrogram (spd_pgs_make_phi_spec)

12) Build energy spectrogram from field aligned distribution (spd_pgs_make_e_spec)

13) Calculate FAC moments (spd_pgs_moments)

dist = xxx_get_yyy_dist(tvarname, time_idx[i], /structure)

(cache clean_dist.bins if FAC requested!)

(if FAC, PA, or gyro are requested)

1) Validate input

2) Find timestamps for the requested trange (with xxx_get_yyy_dist); this is so
that you can interpolate the support data to the same times as the
distribution data

3) Prepare the support data

4) Loop over time to build the spectrograms/moments

5) Create the tplot variables

xxx_part_products

Create the tplot variables
1) Create spectrograms with spd_pgs_make_tplot

2) Create moments with spd_pgs_moments_tplot

Extra

Units

flux # / (cm^2 * s * sr * eV)

eflux eV / (cm^2 * s * sr * eV)

df_cm s^3 / cm^6

df_km s^3 / km^6

Converting the Units

;get mass of species
case species_lc of
 'i': A=1;H+
 'proton': A=1;H+
 'hplus': A=1;H+
 'heplus': A=4;He+
 'heplusplus': A=4;He++
 'oplus': A=16;O+
 'oplusplus': A=16;O++
 'e': A=1d/1836;e-
 else: message, 'Unknown species: '+species_lc
endcase

;scaling factor between df and flux units
flux_to_df = A^2 * 0.5447d * 1d6

xxx_convert_flux_units
Step 1: determine the scaling factor between DF and flux units

Converting the Units
xxx_convert_flux_units

Step 2: do the calculation

;convert between km^6 and cm^6 for df_km
cm_to_km = 1d30

;calculation will be kept simple and stable as possible by
;pre-determining the final exponent of each scaling factor
;rather than multiplying by all applicable in/out factors
;these exponents should always be integers!
; [energy, flux_to_df, cm_to_km]
in = [0,0,0]
out = [0,0,0]

;get input/output scaling exponents
case units_in of
 'flux': in = [1,0,0]
 'eflux':
 'df_km': in = [2,-1,0]
 'df_cm': in = [2,-1,1]
 'df': message, 'df units no longer supported - use df_km or df_cm instead'
 else: message, 'Unknown input units: '+units_in
endcase

case units_out of
 'flux':out = -[1,0,0]
 'eflux':
 'df_km': out = -[2,-1,0]
 'df_cm': out = -[2,-1,1]
 'df': message, 'df units no longer supported - use df_km or df_cm instead'
 else: message, 'Unknown output units: '+units_out
endcase

exp = in + out

;ensure everything is double prec first for numerical stability
; -target field won't be mutated since it's part of a structure
output.data = double(dist.data) * double(dist.energy)^exp[0] * (flux_to_df^exp[1] * cm_to_km^exp[2])

output.units_name = strlowcase(units)

Reforming the data for calculations
xxx_pgs_clean_data

 dims = dimen(data.data)

 output= { $
 dims: dims, $
 time: data.time, $
 end_time:data.end_time, $
 charge:data.charge, $
 mass:data.mass,$
 species: data.species, $
 magf:[0.,0.,0.],$
 sc_pot:0.,$
 scaling:fltarr(dims[0],dims[1]*dims[2])+1,$
 units:units,$
 data: reform(data.data,dims[0],dims[1]*dims[2]), $
 bins: reform(data.bins,dims[0],dims[1]*dims[2]), $
 energy: reform(data.energy,dims[0],dims[1]*dims[2]), $
 denergy: reform(data.denergy,dims[0],dims[1]*dims[2]), $
 phi:reform(data.phi,dims[0],dims[1]*dims[2]), $
 dphi:reform(data.dphi,dims[0],dims[1]*dims[2]), $
 theta:reform(data.theta,dims[0],dims[1]*dims[2]), $
 dtheta:reform(data.dtheta,dims[0],dims[1]*dims[2]) $
 }

Keyword Purpose

probe/instrument/data_rate/etc mission specific parameters

trange time range

outputs data products to generate, e.g., ’energy’, ‘phi’, ‘theta’,
‘gyro’, ‘pa’ and ‘moments’

units output units (df_cm, df_km, flux, eflux); defaults to eflux

phi apply limits to phi angles

theta apply limits to theta angles

pitch apply limits to pitch angles

gyro apply limits to gyro phase angles

regrid 2 element array specifying resampling resolution of FAC
distribution

no_regrid flag to skip regridding step when converting to FAC

datagap setting for tplot variables, controls how long a gap must be
before it is drawn

fac_type field aligned coordinate system variant. Existing options:
‘phigeo’, ‘mphigeo’, ‘xgse’

xxx_part_getspec standard keywords

2D Slices
2D slice plug-ins allow users to generate/plot slices through

velocity distribution functions

Routine Purpose

xxx_part_slice2d Wrapper routine for spd_slice2d; loads distribution and support data
into tplot variables

xxx_get_yyy_dist Converts distribution tplot variables into 3D particle structures (see
PGS section for more details)

2D Slice Plug-in Overview

xxx_part_slice2d

1) Load distribution and support data

2) Return the structure or array of structures for the requested trange (xxx_get_yyy_dist)

3) Pass the output of (2) and the user’s keywords to spd_slice2d; spd_slice2d accepts
structures, arrays of structures, or points to either of these

4) (optional) Pass the output of (3) to spd_slice2d_plot to generate the plot (should also
allow the user to pass graphics keywords); this is optional - you could also return the
slices and allow the user to manually pass them to spd_slice2d_plot (this is how THEMIS
works)

See mms_part_slice2d.pro/thm_part_slice2d.pro for examples

ISEE 3D
ISEE 3D plug-ins allow users to visualize the velocity distribution

functions in 3D

Routine Purpose

xxx_part_isee3d
Wrapper routine for ISEE_3D; loads distribution and support data

into tplot variables and converts into ISEE_3D compatible data
structures using spd_dist_to_hash

xxx_get_yyy_dist Converts distribution tplot variables into 3D particle structures (see
PGS section for more details)

ISEE 3D Plug-in Overview

xxx_part_isee3d

1) Load distribution and support data

2) Return the structure or array of structures for the requested trange (xxx_get_yyy_dist)

3) Pass the output of (2) to spd_dist_to_hash

4) Pass the output of (3) to isee_3d in the data keyword, along with the support data and
user’s keywords

See mms_part_isee3d.pro for an example

