# Introduction to pySPEDAS 1.0

July 6, 2020 Eric Grimes <u>egrimes@igpp.ucla.edu</u> Feel free to email me your questions!

#### Overview

- Introduction
- Projects Supported
- Getting Started
- Examples
- Getting Help
- How to Contribute

#### Introduction

- Requires Python 3.5 or later
- Depends on pyTplot (developed at LASP)
- We're doing development on GitHub

https://github.com/spedas/pyspedas

 If you have questions about instruments supported, or the names of their functions, please see the READMEs on GitHub

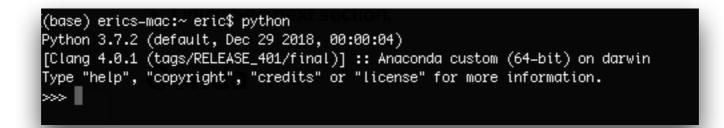
# **Projects Supported**

- Advanced Composition Explorer (ACE)
- Arase (ERG)
- Cluster
- Colorado Student Space Weather Experiment (CSSWE)
- Deep Space Climate Observatory (DSCOVR)
- Equator-S
- Fast Auroral Snapshot Explorer (FAST)
- Geotail
- Geostationary Operational Environmental Satellite (GOES)
- Imager for Magnetopause-to-Aurora Global Exploration (IMAGE)
- Mars Atmosphere and Volatile Evolution (MAVEN)

- Magnetic Induction Coil Array (MICA)
- Magnetospheric Multiscale (MMS)
- OMNI
- Polar Orbiting Environmental Satellites (POES)
- Polar
- Parker Solar Probe (PSP)
- Van Allen Probes (RBSP)
- Solar Terrestrial Relations Observatory (STEREO)
- Time History of Events and Macroscale Interactions during Substorms (THEMIS)
- Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS)
- Ulysses
- Wind

### **Getting Started**

- Installing Anaconda
- Virtual Environments
- Installing pySPEDAS
- Local Data Directories


# Installing Anaconda

Step-by-step instructions for installing Anaconda can be found at:

- macOS
  - https://docs.anaconda.com/anaconda/install/mac-os/
- Windows
  - https://docs.anaconda.com/anaconda/install/windows/
- Linux
  - <u>https://docs.anaconda.com/anaconda/install/linux/</u>

# Installing Anaconda

- Once Anaconda is installed, you should be able to open Python in your terminal window by typing "python".
  - note: your Python version will be the first line displayed



#### Virtual Environments

- To avoid potential dependency issues with other Python packages, it's best to create a virtual environment in Python
- You can create a virtual environment in your terminal with:
  - python -m venv environment-name
- And enter into that virtual environment by running the 'activate' script with:
  - source environment-name/bin/activate (macOS and Linux)
  - .\environment-name\Scripts\activate (Windows)
- e.g.,

(base) erics-mac:~ eric\$ python -m venv pyspedas-stuff
(base) erics-mac:~ eric\$ source pyspedas-stuff/bin/activate
(pyspedas-stuff) (base) erics-mac:~ eric\$ python
Python 3.7.2 (default, Dec 29 2018, 00:00:04)
[Clang 4.0.1 (tags/RELEASE\_401/final)] :: Anaconda custom (64-bit) on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

# Installing pySPEDAS

- The first time you enter your virtual environment, you'll have to install pyspedas; this is as simple as:
  - pip install pyspedas
- This should go out and find all of the required libraries and install them inside the virtual environment.
- If you would like to upgrade your copy of your pySPEDAS libraries inside of your virtual environment, use:
  - pip install pyspedas --upgrade

#### Local Data Directories

- Your data directory can be set using the SPEDAS\_DATA\_DIR environment variable. Each mission also has its own data directory, e.g., MMS\_DATA\_DIR, THM\_DATA\_DIR, etc.
- Note: mission data directories will override the root data directory set in SPEDAS\_DATA\_DIR.

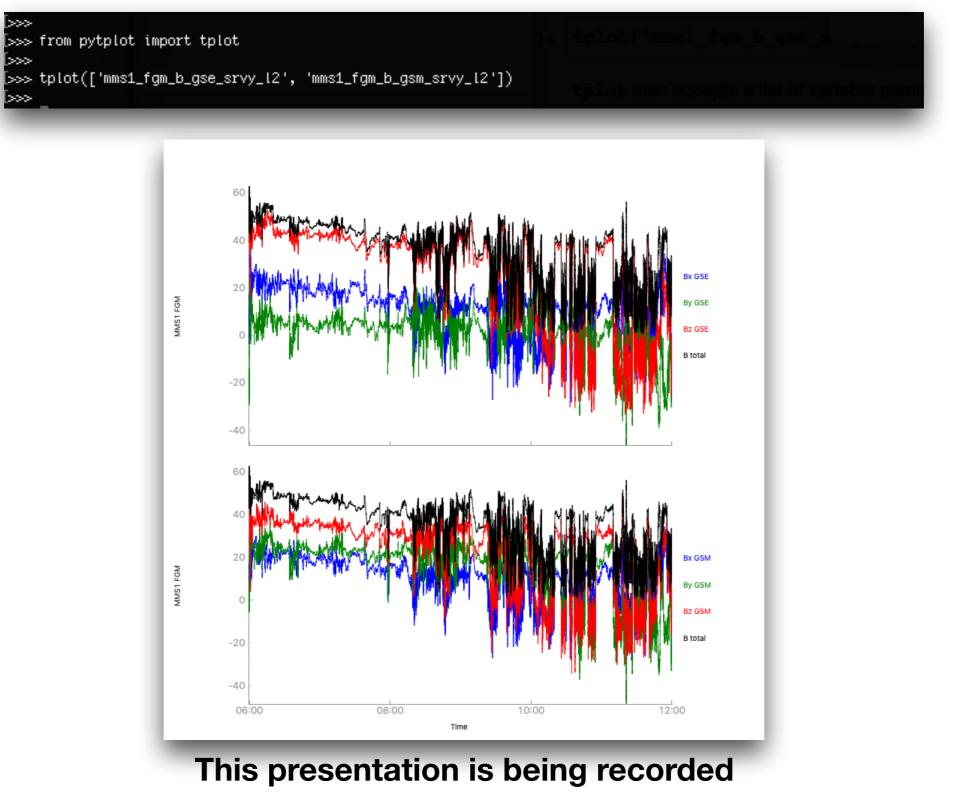
# Importing pySPEDAS

• To get started, import pyspedas:

(july6tutorial) erics-mac:~ eric\$ python Python 3.7.6 (default, Jan 8 2020, 13:42:34) [Clang 4.0.1 (tags/RELEASE\_401/final)] :: Anaconda, Inc. on darwin Type "help", "copyright", "credits" or "license" for more information. >>> import pyspedas >>>

You can also access the load routines by importing the mission modules:



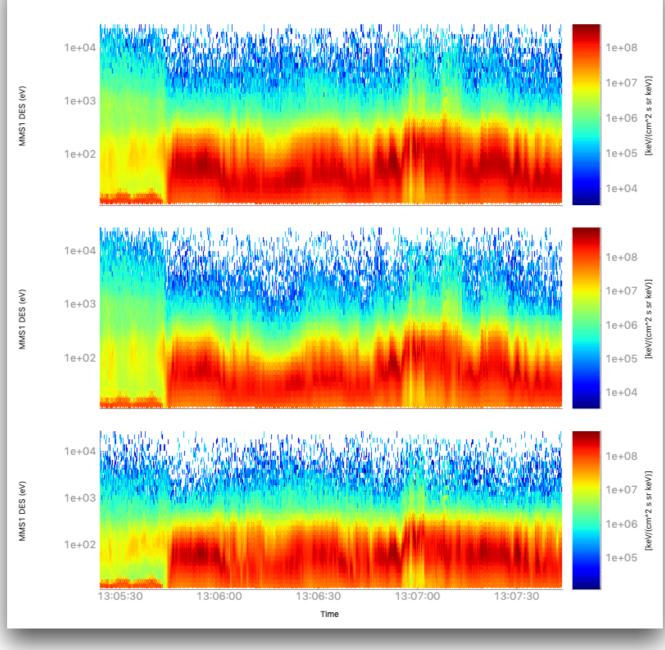

• You can also import the instrument load routines, e.g.:



#### Loading MMS FGM Data

[>>> data = pyspedas.mms.fgm(trange=['2015-10-16/6:00', '2015-10-16/12:00'], time\_clip=True) 04-Jul-20 21:04:15: Loading /Volumes/data/data/mms\_test\_folder/mms1/fgm/srvy/l2/2015/10/mms1\_fgm\_srvy\_l2\_20151016\_v4.18.0.cdf The lengths of x and y do not match! mms1\_fgm\_rdeltahalf\_srvy\_l2 is currently not in pytplot. Time clip was applied to: mms1\_fgm\_b\_gse\_srvy\_l2 Time clip was applied to: mms1\_fgm\_b\_gsm\_srvy\_l2 Time clip was applied to: mms1\_fqm\_b\_dmpa\_srvy\_l2 Time clip was applied to: mms1\_fgm\_b\_bcs\_srvy\_l2 Time clip was applied to: mms1\_fgm\_flag\_srvy\_l2 Time clip was applied to: mms1\_fqm\_r\_gse\_srvy\_l2 Time clip was applied to: mms1\_fgm\_r\_gsm\_srvy\_l2 Time clip was applied to: mms1\_fgm\_hirange\_srvy\_l2 Time clip was applied to: mms1\_fqm\_bdeltahalf\_srvy\_l2 Time clip was applied to: mms1\_fgm\_stemp\_srvy\_l2 Time clip was applied to: mms1\_fgm\_etemp\_srvy\_l2 Time clip was applied to: mms1\_fgm\_mode\_srvy\_l2 Time clip error: No pytplot names were provided. Loaded variables: mms1\_fqm\_b\_qse\_srvy\_l2 mms1\_fgm\_b\_gsm\_srvy\_l2 mms1\_fgm\_b\_dmpa\_srvy\_l2 mms1\_fqm\_b\_bcs\_srvy\_l2 mms1\_fqm\_flag\_srvy\_l2 mms1\_fgm\_r\_gse\_srvy\_l2 mms1\_fgm\_r\_gsm\_srvy\_l2 mms1\_fgm\_hirange\_srvy\_l2 mms1\_fam\_bdeltahalf\_srvy\_l2 mms1\_fgm\_stemp\_srvy\_l2 mms1\_fqm\_etemp\_srvy\_l2 mms1\_fgm\_mode\_srvy\_l2 mms1\_fgm\_rdeltahalf\_srvy\_l2 >>>

#### Plotting MMS FGM Data




# Loading MMS FPI Data

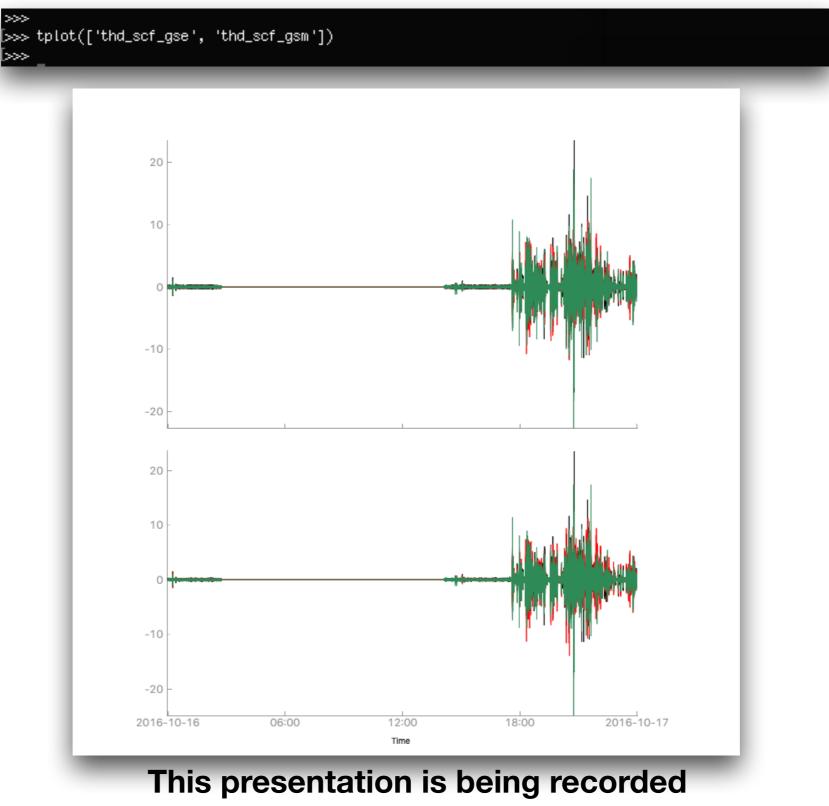
>>> pyspedas.mms.fpi(trange=['2015-10-16/13:06', '2015-10-16/13:07'], data\_rate='brst', datatype='des-moms') 04-Jul-20 21:14:49: Downloading mms1\_fpi\_brst\_l2\_des-moms\_20151016130524\_v3.3.0.cdf to /Volumes/data/data/mms\_test\_folder/mms1/fpi/brst/l2/des-moms/2015/10/16 Loaded variables: mms1\_des\_errorflags\_brst mms1\_des\_compressionloss\_brst mms1\_des\_startdelphi\_count\_brst mms1\_des\_startdelphi\_angle\_brst mms1\_des\_sector\_despinp\_brst mms1\_des\_pitchangdist\_lowen\_brst mms1\_des\_pitchangdist\_miden\_brst mms1\_des\_pitchangdist\_highen\_brst mms1\_des\_energyspectr\_px\_brst mms1\_des\_energyspectr\_mx\_brst mms1\_des\_energyspectr\_py\_brst mms1\_des\_energyspectr\_my\_brst mms1\_des\_energyspectr\_pz\_brst mms1\_des\_energyspectr\_mz\_brst mms1\_des\_energyspectr\_par\_brst mms1\_des\_energyspectr\_anti\_brst mms1\_des\_energyspectr\_perp\_brst mms1\_des\_energyspectr\_omni\_brst mms1\_des\_numberdensity\_brst mms1\_des\_densityextrapolation\_low\_brst mms1\_des\_densityextrapolation\_high\_brst mms1\_des\_bulkv\_dbcs\_brst mms1\_des\_bulkv\_spintone\_dbcs\_brst mms1\_des\_bulkv\_gse\_brst mms1\_des\_bulkv\_spintone\_gse\_brst mms1\_des\_prestensor\_dbcs\_brst mms1\_des\_prestensor\_qse\_brst mms1\_des\_temptensor\_dbcs\_brst mms1\_des\_temptensor\_gse\_brst mms1\_des\_heatg\_dbcs\_brst mms1\_des\_heatq\_gse\_brst mms1\_des\_temppara\_brst mms1\_des\_tempperp\_brst

#### Plotting MMS FPI Data

[>>> tplot(['mms1\_des\_energyspectr\_omni\_brst', 'mms1\_des\_energyspectr\_perp\_brst', 'mms1\_des\_energyspectr\_par\_brst'])
[>>>



#### Finding the Loaded Variables


>>> from pytplot import tplot\_names >>> tplot\_names() 0 : mms1\_fgm\_b\_gse\_srvy\_l2 1 : mms1\_fgm\_b\_gsm\_srvy\_l2 2 : mms1\_fgm\_b\_dmpa\_srvy\_l2 3 : mms1\_fgm\_b\_bcs\_srvy\_l2 4 : mms1\_fqm\_flaq\_srvy\_l2 5 : mms1\_fqm\_r\_qse\_srvy\_l2 6 : mms1\_fgm\_r\_gsm\_srvy\_l2 7 : mms1\_fgm\_hirange\_srvy\_l2 8 : mms1\_fgm\_bdeltahalf\_srvy\_l2 9 : mms1\_fgm\_stemp\_srvy\_l2 10 : mms1\_fqm\_etemp\_srvy\_l2 11 : mms1\_fqm\_mode\_srvy\_l2 12 : mms1\_des\_errorflags\_brst 13 : mms1\_des\_compressionloss\_brst 14 : mms1\_des\_startdelphi\_count\_brst 15 : mms1\_des\_startdelphi\_angle\_brst 16 : mms1\_des\_sector\_despinp\_brst 17 : mms1\_des\_pitchangdist\_lowen\_brst 18 : mms1\_des\_pitchangdist\_miden\_brst 19 : mms1\_des\_pitchangdist\_highen\_brst 20 : mms1\_des\_energyspectr\_px\_brst 21 : mms1\_des\_energyspectr\_mx\_brst 22 : mms1\_des\_energyspectr\_py\_brst 23 : mms1\_des\_energyspectr\_my\_brst 24 : mms1\_des\_energyspectr\_pz\_brst 25 : mms1\_des\_energyspectr\_mz\_brst 26 : mms1\_des\_energyspectr\_par\_brst 27 : mms1\_des\_energyspectr\_anti\_brst 28 : mms1\_des\_energyspectr\_perp\_brst 29 : mms1\_des\_energyspectr\_omni\_brst 30 : mms1\_des\_numberdensity\_brst

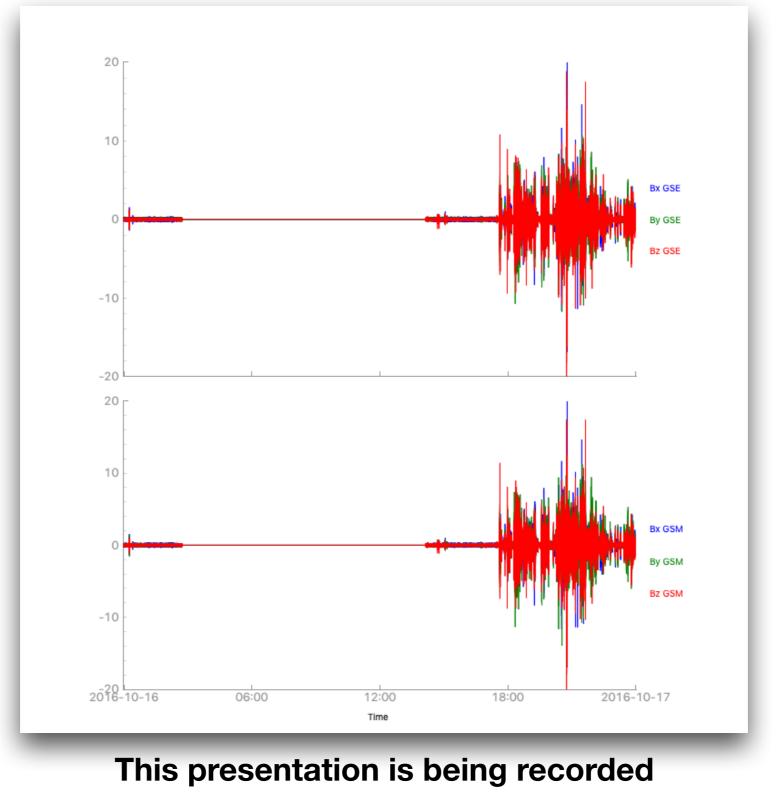
#### Loading THEMIS SCM Data

>>>

>>> pyspedas.themis.scm(probe='d', trange=['2016-10-16', '2016-10-17'])
05-Jul-20 11:36:30: Downloading remote index: http://themis.ssl.berkeley.edu/data/themis/thd/l2/scm/2016/
05-Jul-20 11:36:30: File is current: /Volumes/data/data/themis/thd/l2/scm/2016/thd\_l2\_scm\_20161016\_v01.cdf
['thd\_scf\_btotal', 'thd\_scf\_gse', 'thd\_scf\_gsm', 'thd\_scf\_dsl', 'thd\_scp\_btotal', 'thd\_scp\_gse', 'thd\_scp\_gsm', 'thd\_scp\_dsl', 'thd\_scw\_btotal',
 'thd\_scw\_gse', 'thd\_scw\_dsl']
>>>

#### **Plotting THEMIS SCM Data**




#### **Updating Plot Metadata**

| l>>>><br>[>>>> from pytplo<br>[>>>>                    | t import opt     | ions                                                                                              |
|--------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------|
| Help on function option                                | s in module pytp | lot.options:                                                                                      |
| <b>options</b> (name, option=No<br>This function allow |                  | opt_dict=None)<br>t a large variety of options for individual plots.                              |
| Parametero.                                            |                  |                                                                                                   |
| Parameters:<br>name : str                              |                  |                                                                                                   |
|                                                        | ber of the tplot | variable                                                                                          |
| option : str                                           | Der of the throt | vui table                                                                                         |
|                                                        | the ontion Se    | e section below.                                                                                  |
| value : str/int                                        |                  |                                                                                                   |
|                                                        |                  | ee section below.                                                                                 |
| dict : dict                                            |                  |                                                                                                   |
|                                                        | a dictionary of  | option:value pairs. Option and value                                                              |
|                                                        |                  | dictionary item is supplied.                                                                      |
|                                                        | noodod ti onto   |                                                                                                   |
| Options:                                               |                  |                                                                                                   |
|                                                        |                  |                                                                                                   |
| Options                                                | Value type       | Notes                                                                                             |
|                                                        | ==== =========== |                                                                                                   |
| anno a Color                                           | str/list         | Red, Orange, Yellow, Green, Blue, etc.                                                            |
| Colormap                                               | str/list         | https://matplotlib.org/examples/color/colormaps_reference.html.                                   |
| Spec                                                   | int              | 1 sets the Tplot Variable to spectrogram mode, 0 reverts.                                         |
| OLSS AALt                                              | int              | 1 sets the Tplot Variable to altitude plot mode, 0 reverts.                                       |
| сэ тэ каМар                                            | int              | 1 sets the Tplot Variable to latitude/longitude mode, 0 reverts.                                  |
| link                                                   | list             | Allows a user to reference one tplot variable to another.                                         |
| ylog                                                   | int              | 1 sets the y axis to log scale, 0 reverts.                                                        |
| a zlog                                                 | int              | 1 sets the z axis to log scale, 0 reverts (spectrograms only).                                    |
| legend_names                                           | list             | A list of strings that will be used to identify the lines.                                        |
| xlog_slice                                             | bool             | Sets x axis on slice plot to log scale if True.                                                   |
| ylog                                                   | bool             | Set y axis on main plot window to log scale if True.                                              |
| ylog_slice                                             | bool             | Sets y axis on slice plot to log scale if True.                                                   |
| zlog                                                   | bool             | Sets z axis on main plot window to log scale if True.                                             |
| line_style                                             | str              | scatter (to make scatter plots), or solid_line, dot, dash, dash_dot, dash_dot_dot_dot, long_dash. |
| char_size                                              | int              | Defines character size for plot labels, etc.                                                      |
| name                                                   | str              | The title of the plot.                                                                            |
| panel_size                                             | flt              | Number between (0,1], representing the percent size of the plot.                                  |
| basemap                                                | str              | Full path and name of a background image for "Map" plots.                                         |
| alpha                                                  | flt              | Number between [0,1], gives the transparancy of the plot lines.                                   |
| thick                                                  | flt              | Sets plot line width.                                                                             |
| yrange                                                 | flt list         | Two numbers that give the y axis range of the plot.                                               |
| zrange                                                 | flt list         | Two numbers that give the z axis range of the plot.                                               |
| xrange_slice                                           | flt list         | Two numbers that give the x axis range of spectrogram slicing plots.                              |
| yrange_slice                                           | flt list         | Two numbers that give the y axis range of spectrogram slicing plots.                              |
| ytitle                                                 | str              | Title shown on the y axis.                                                                        |
| ztitle                                                 | str              | Title shown on the z axis. Spec plots only.                                                       |
| 12.42 Plysubtitle                                      | str              | Subtitle shown on the y axis.                                                                     |
| zsubtitle                                              | str              | Subtitle shown on the z axis. Spec plots only.                                                    |

#### Updating Plot Metadata

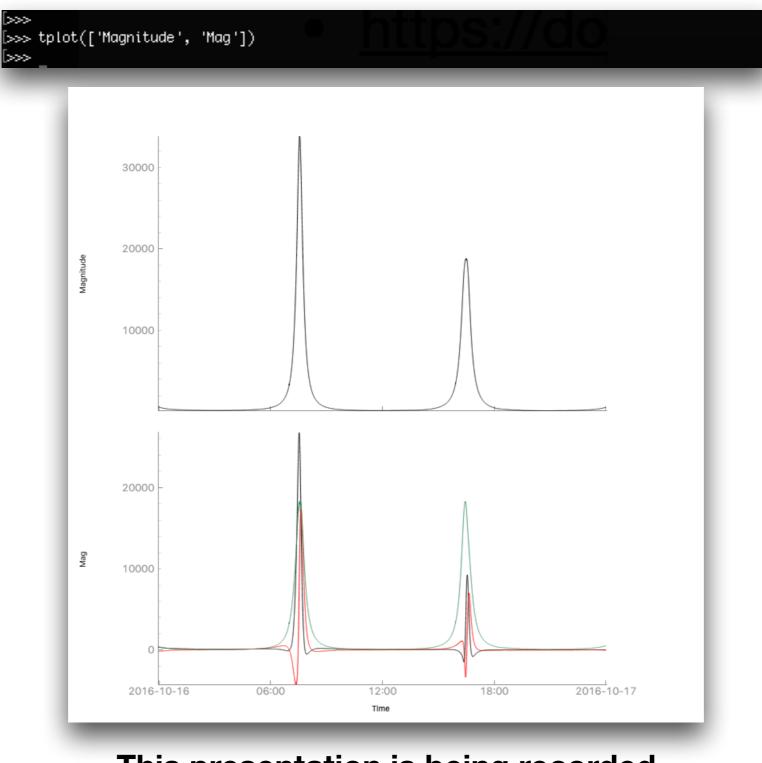
b>>> options('thd\_scf\_gsm', 'legend\_names', ['Bx GSM', 'By GSM', 'Bz GSM'])
b>>> options('thd\_scf\_gse', 'legend\_names', ['Bx GSE', 'By GSE', 'Bz GSE'])
b>>> options('thd\_scf\_gsm', 'Color', ['blue', 'green', 'red'])
b>>> options('thd\_scf\_gse', 'Color', ['blue', 'green', 'red'])
b>>> options('thd\_scf\_gsm', 'yrange', [-20, 20])
b>>> options('thd\_scf\_gse', 'thd\_scf\_gsm'])
b>>> tplot(['thd\_scf\_gse', 'thd\_scf\_gsm'])

#### **Updating Plot Metadata**



# Loading RBSP Data

[>>>>


>>>>

>>> pyspedas.rbsp.emfisis(trange=['2016-10-16', '2016-10-17'])

05-Jul-20 11:49:40: Downloading remote index: https://spdf.sci.gsfc.nasa.gov/pub/data/rbsp/rbspa/l3/emfisis/magnetometer/4sec/sm/2016/ 05-Jul-20 11:49:41: File is current: /Volumes/data/data/rbsp/rbspa/l3/emfisis/magnetometer/4sec/sm/2016/rbsp-a\_magnetometer\_4sec-sm\_emfisis-l3\_2 0161016\_v1.6.1.cdf

['Mag', 'Magnitude', 'delta', 'lambda', 'rms', 'coordinates']

#### Plotting RBSP Data



#### **Finding Load Routine Options**

Help on function mageis in module pyspedas.rbsp:

mageis(trange=['2015-11-5', '2015-11-6'], probe='a', datatype='', level='l3', rel='rel04', suffix='', get\_support\_data=False, varformat=None, do wnloadonly=False, notplot=False, no\_update=False, time\_clip=False) This function loads data from the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) Parameters: trange : list of str time range of interest [starttime, endtime] with the format 'YYYY-MM-DD', YYYY-MM-DD'] or to specify more or less than a day ['YYYY-MM-DD/hh:mm:ss', 'YYYY-MM-DD/hh:mm:ss'] probe: str or list of str Spacecraft probe name ('a' or 'b'); default: a datatype: str Data type; Valid options: suffix: str The tplot variable names will be given this suffix. By default, no suffix is added. get\_support\_data: bool Data with an attribute "VAR\_TYPE" with a value of "support\_data" will be loaded into tplot. By default, only loads in data with a "VAR\_TYPE" attribute of "data". varformat: str The file variable formats to load into tplot. Wildcard character "\*" is accepted. By default, all variables are loaded in. downloadonly: bool Set this flag to download the CDF files, but not load them into tplot variables notplot: bool Return the data in hash tables instead of creating tplot variables no\_update: bool If set, only load data from your local cache time\_clip: bool Time clip the variables to exactly the range specified in the trange keyword Returns: List of tplot variables created.

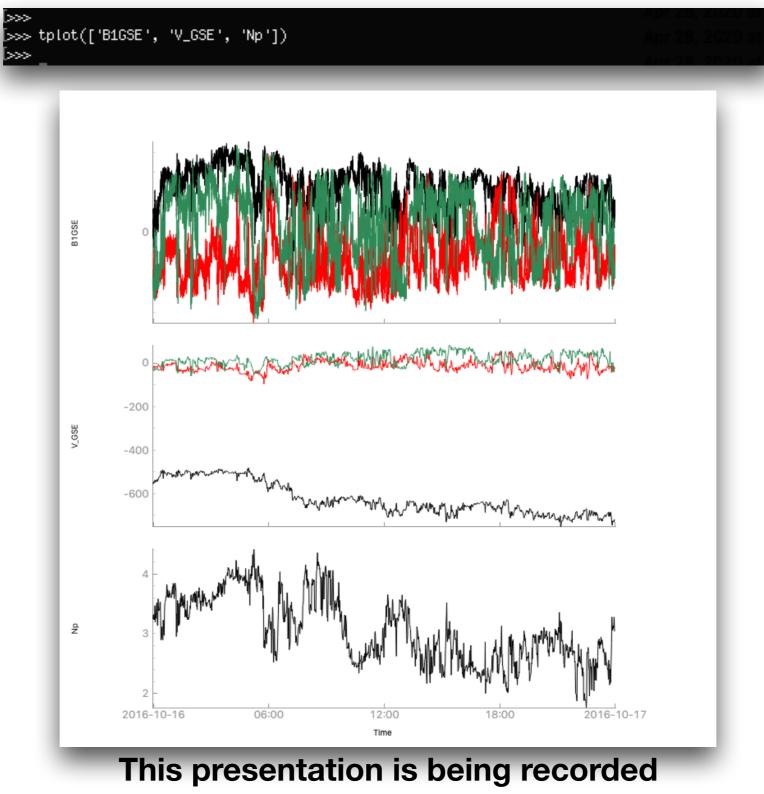
# Loading RBSP Data

#### >>>>

[>>> files = pyspedas.rbsp.mageis(trange=['2018-11-5', '2018-11-6'], probe=['a', 'b'], downloadonly=True) [05-Jul-20 11:54:52: Downloading remote index: https://spdf.sci.gsfc.nasa.gov/pub/data/rbsp/rbspa/l3/ect/mageis/sectors/rel04/2018/ 05-Jul-20 11:54:53: File is current: /Volumes/data/data/rbsp/rbspa/l3/ect/mageis/sectors/rel04/2018/rbspa\_rel04\_ect-mageis-l3\_20181105\_v8.1.0.cdf 05-Jul-20 11:54:53: Downloading remote index: https://spdf.sci.gsfc.nasa.gov/pub/data/rbsp/rbspb/l3/ect/mageis/sectors/rel04/2018/ 05-Jul-20 11:54:53: Downloading remote index: https://spdf.sci.gsfc.nasa.gov/pub/data/rbsp/rbspb/l3/ect/mageis/sectors/rel04/2018/ 05-Jul-20 11:54:53: Downloading remote index: https://spdf.sci.gsfc.nasa.gov/pub/data/rbsp/rbspb/l3/ect/mageis/sectors/rel04\_ect-mageis-l3\_20181105\_v8.1.0.cdf 05-Jul-20 11:54:54: File is current: /Volumes/data/data/rbsp/rbspb/l3/ect/mageis/sectors/rel04/2018/rbspb\_rel04\_ect-mageis-l3\_20181105\_v8.1.0.cdf [>>>

[>>> files

>>>>


['/Volumes/data/data/rbsp/rbspa/l3/ect/mageis/sectors/rel04/2018/rbspa\_rel04\_ect-mageis-l3\_20181105\_v8.1.0.cdf', '/Volumes/data/data/rbsp/rbspb/l3/ect /mageis/sectors/rel04/2018/rbspb\_rel04\_ect-mageis-l3\_20181105\_v8.1.0.cdf']

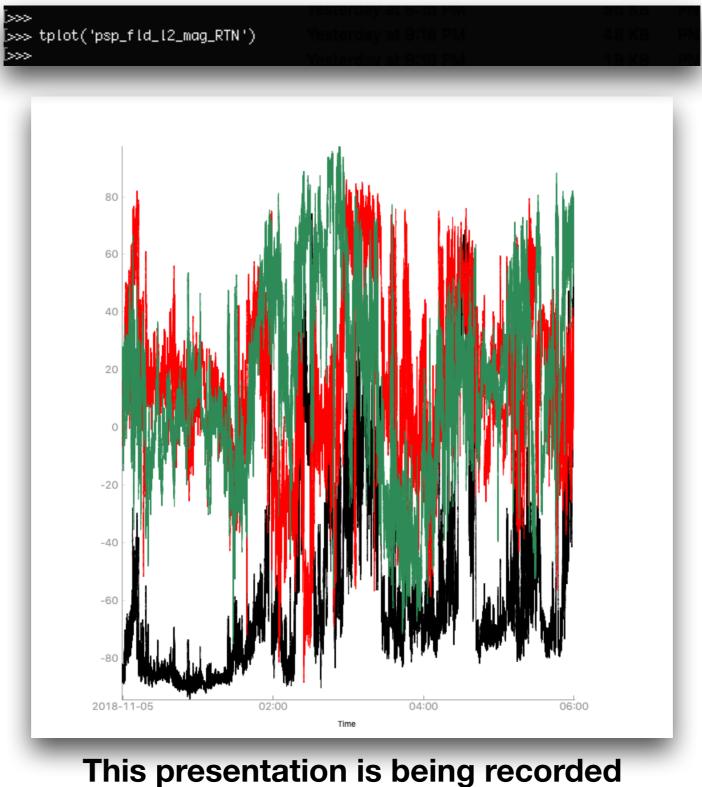
# Loading DSCOVR Data

| 1 |                                                                                                                                                               | Time clip was |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|   | >>> from pyspedas import dscovr                                                                                                                               |               |
|   |                                                                                                                                                               |               |
| _ | >>>> dscovr.mag(trange=['2016–10–16', '2016–10–17'])                                                                                                          |               |
|   | 05-Jul-20 12:17:11: Downloading remote index: https://spdf.sci.gsfc.nasa.gov/pub/data/dscovr/h0/mag/2016/                                                     |               |
|   | 05-Jul-20 12:17:12: File is current: /Volumes/data/data/dscovr/h0/mag/2016/dscovr_h0_mag_20161016_v01.cdf                                                     |               |
|   | ['B1F1', 'B1SDF1', 'B1GSE', 'B1SDGSE', 'B1RTN', 'B1SDRTN']                                                                                                    |               |
|   |                                                                                                                                                               |               |
|   | >>> dscovr.fc(trange=['2016-10-16', '2016-10-17'])                                                                                                            | 100471        |
|   | 05-Jul-20 12:17:24: Downloading remote index: https://spdf.sci.gsfc.nasa.gov/pub/data/dscovr/h1/faraday_cup                                                   |               |
|   | 05-Jul-20 12:17:25: File is current: /Volumes/data/data/dscovr/h1/faraday_cup/2016/dscovr_h1_fc_20161016_v0<br>['V_GSE', 'THERMAL_SPD', 'Np', 'THERMAL_TEMP'] | o.cui         |

[>>>

#### Plotting DSCOVR Data



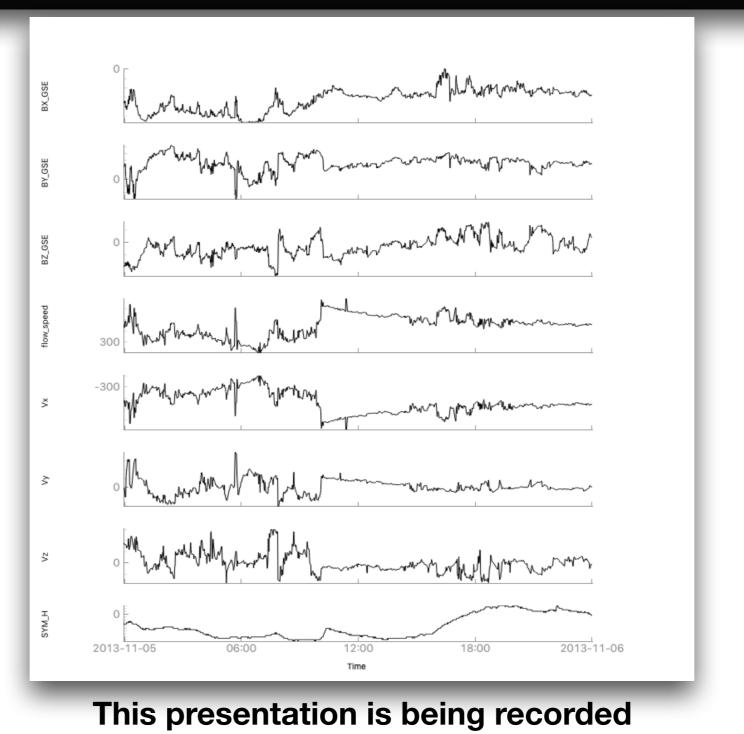

# Loading PSP Data

»>>>

>>> fields\_vars = pyspedas.psp.fields(trange=['2018-11-5', '2018-11-5/06:00'], datatype='mag\_rtn', level='l2') 05-Jul-20 12:45:46: Downloading remote index: https://spdf.sci.gsfc.nasa.gov/pub/data/psp/fields/l2/mag\_rtn/2018/ 05-Jul-20 12:45:48: File is current: /Volumes/data/data/psp/fields/l2/mag\_rtn/2018/psp\_fld\_l2\_mag\_rtn\_2018110500\_v01.cdf >>>

>>> fields\_vars ['psp\_fld\_l2\_mag\_RTN'] >>>

#### Plotting PSP Data




## Loading OMNI Data

[>>> pyspedas.omni.data(trange=['2013-11-5', '2013-11-6']) 05-Jul-20 12:20:21: Downloading remote index: https://spdf.sci.gsfc.nasa.gov/pub/data/omni/omni\_cdaweb/hro2\_1min/2013/ 05-Jul-20 12:20:22: File is current: /Volumes/data/data/omni/hro2\_1min/2013/omni\_hro2\_1min\_20131101\_v01.cdf Time clip was applied to: IMF Time clip was applied to: PLS Time clip was applied to: IMF\_PTS Time clip was applied to: PLS\_PTS Time clip was applied to: percent\_interp Time clip was applied to: Timeshift Time clip was applied to: RMS\_Timeshift Time clip was applied to: RMS\_phase Time clip was applied to: Time\_btwn\_obs Time clip was applied to: F Time clip was applied to: BX\_GSE Time clip was applied to: BY\_GSE Time clip was applied to: BZ\_GSE Time clip was applied to: BY\_GSM Time clip was applied to: BZ\_GSM Time clip was applied to: RMS\_SD\_B Time clip was applied to: RMS\_SD\_fld\_vec Time clip was applied to: flow\_speed Time clip was applied to: Vx Time clip was applied to: Vy Time clip was applied to: Vz Time clip was applied to: proton\_density Time clip was applied to: T Time clip was applied to: NaNp\_Ratio Time clip was applied to: Pressure Time clip was applied to: E Time clip was applied to: Beta Time clip was applied to: Mach\_num Time clip was applied to: Mgs\_mach\_num Time alin use applied to.

#### Plotting OMNI Data

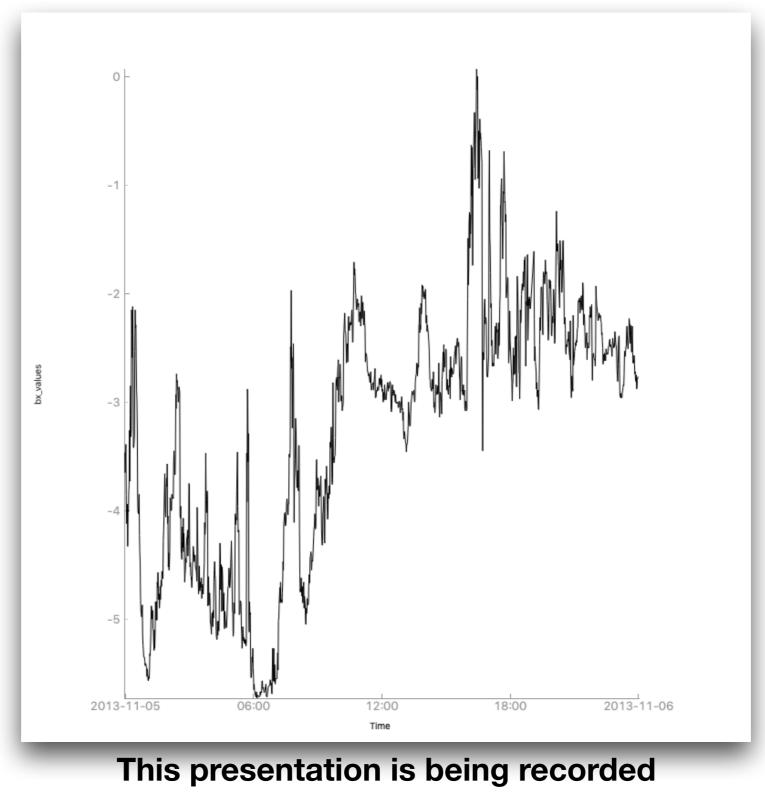
>>> tplot(['BX\_GSE', 'BY\_GSE', 'BZ\_GSE', 'flow\_speed', 'Vx', 'Vy', 'Vz', 'SYM\_H'])
>>>



#### Working with the Data Values

# Working with the Times

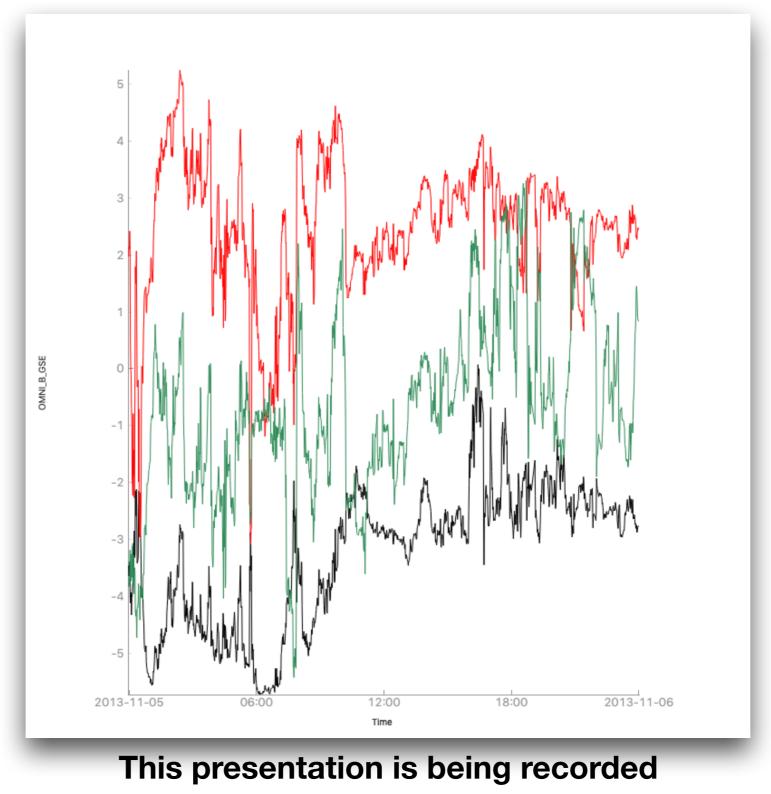
| [>>> from pyspedas import time_string 00a+01, 1.802000a+01,, 1.481750a+04,                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| I.899954e+04. 2.436178e+041.                                                                                                                            |
| <pre>&gt;&gt;&gt; time_string(bx_times[0:5])</pre>                                                                                                      |
| ['2013-11-05 00:00:00.000000', '2013-11-05 00:01:00.000000', '2013-11-05 00:02:00.000000', '2013-11-05 00:03:00.0000000', '2013-11-05 00:04:00.000000'] |
| <pre>&gt;&gt;&gt; 2.151425e+04, 2.758621e+04],</pre>                                                                                                    |
| >>> from pyspedas import time_double                                                                                                                    |
| isse - Holder                                                                                                                                           |
| $>>>$ time_double(time_string(bx_times[0:5]))                                                                                                           |
| [1383609600.0, 1383609660.0, 1383609720.0, 1383609780.0, 1383609840.0]                                                                                  |
|                                                                                                                                                         |


#### Working with Energy Spectra

```
[>>> times, data, energies = get_data('mms1_des_energyspectr_omni_brst')
>>>
[≫>> times
array([1.44500016e+09, 1.44500016e+09, 1.44500016e+09, ...,
       1.44500098e+09, 1.44500098e+09, 1.44500098e+09])
>>>
[≫>> data
array([[5.9108852e+07, 6.9532248e+07, 9.2644320e+07, ..., 0.0000000e+00,
        0.0000000e+00, 0.0000000e+00],
       [6.3552028e+07, 8.2698200e+07, 1.1583492e+08, ..., 3.3417566e+04,
        3.6519996e+04, 0.0000000e+00],
       [5.9101072e+07, 6.9920048e+07, 9.6920600e+07, ..., 6.9254941e+03,
        2.9787959e+04, 0.0000000e+00],
       ...,
       [5.7632320e+07, 7.7443400e+07, 1.1962530e+08, ..., 1.3054982e+06,
        2.1576712e+05, 0.0000000e+00],
       [4.9851772e+07, 6.6963148e+07, 9.6925824e+07, ..., 5.0306168e+04,
        0.0000000e+00, 5.7740699e+04],
       [5.8684188e+07, 8.0578224e+07, 1.2334721e+08, ..., 0.0000000e+00,
        0.0000000e+00, 0.0000000e+00]], dtype=float32)
[≫> energies
array([[1.096000e+01, 1.405000e+01, 1.802000e+01, ..., 1.481758e+04,
        1.899954e+04, 2.436178e+04],
       [1.241000e+01, 1.591000e+01, 2.040000e+01, ..., 1.677878e+04,
        2.151425e+04, 2.758621e+04],
       [1.096000e+01, 1.405000e+01, 1.802000e+01, ..., 1.481758e+04,
        1.899954e+04, 2.436178e+04],
       ....
       [1.241000e+01, 1.591000e+01, 2.040000e+01, ..., 1.677878e+04,
        2.151425e+04, 2.758621e+04],
       [1.096000e+01, 1.405000e+01, 1.802000e+01, ..., 1.481758e+04,
        1.899954e+04, 2.436178e+04],
       [1.241000e+01, 1.591000e+01, 2.040000e+01, ..., 1.677878e+04,
        2.151425e+04, 2.758621e+04]], dtype=float32)
 \sim
```

#### **Creating Variables**

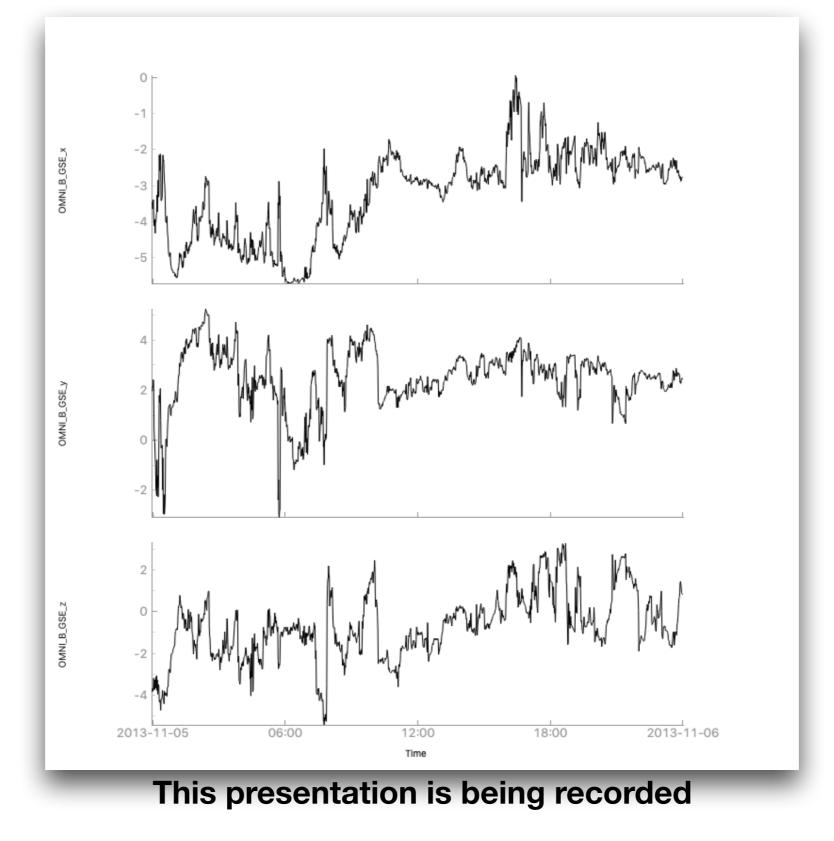
>>>> from pytplot import store\_data >>>> >>>> store\_data('bx\_values', data={'x': bx\_times, 'y': bx\_values}) True >>>> >>>> tplot('bx\_values') >>>>


#### **Creating Variables**



#### **Creating a Vector from Components**

>>>> [>>>> from pytplot import join\_vec [>>>> join\_vec(['BX\_GSE', 'BY\_GSE', 'BZ\_GSE'], new\_tvar='OMNI\_B\_GSE') [>>>> tplot('OMNI\_B\_GSE') [>>>>


#### Creating a Vector



#### Splitting a Vector into Components

>>> from pytplot import split\_vec
>>> from pytplot import split\_vec
>>> split\_vec('OMNI\_B\_GSE')
['OMNI\_B\_GSE\_x', 'OMNI\_B\_GSE\_z']
>>> tplot(['OMNI\_B\_GSE\_x', 'OMNI\_B\_GSE\_y', 'OMNI\_B\_GSE\_z'])
>>> tplot(['OMNI\_B\_GSE\_x', 'OMNI\_B\_GSE\_y', 'OMNI\_B\_GSE\_z'])

#### Splitting a Vector into Components



# Getting Help

- Examples can be found in the READMEs on GitHub
- We also have Jupyter notebooks on GitHub:
  - <u>https://github.com/spedas</u>
- Feel free to email me: egrimes@igpp.ucla.edu

#### How to Contribute

- Try it out!
- Please report bugs, missing documentation, or any other issues so that we can fix them (feel free to email me or submit them through GitHub issues)
- Submit changes through pull requests, or email them to me (whichever is easiest for you)
- If there's a missing dataset or analysis tool that you would like to see included, please let us know!